

Warning

This documentation only applies to MoinMoin version 2 (aka moin2,
moin 2.0, mm2, MoinMoin2, etc.), except where explicitly noted otherwise.
Moin2 is very different from moin 1.x, so docs from one version will not
apply to the other.

Introducing MoinMoin

	General
	About MoinMoin

	What makes MoinMoin special?

	Who is using MoinMoin?

	Features
	Operating System Support

	Servers

	Authentication

	Authorization

	Anti-Spam

	Storage

	Search / Indexing

	User Interface

	Logging

	Technologies

	License

Using MoinMoin

	User Accounts
	Account Creation

	User Settings

	Special Features for Users with Accounts

	Logging out

	Markups Supported by MoinMoin
	Moin Wiki markup overview

	WikiCreole markup overview

	reST (ReStructured Text) Markup

	Docbook XML Markup

	Mediawiki markup overview

	Markdown Markup

	Templates and Meta Data
	Templates

	Meta Data

	Searching and Finding
	Entering search queries

	Simple search queries

	Redirect to best match

	Using wildcards

	Using regular expressions

	Searching in specific fields

	Notes

	More information

	File Upload
	Single File Upload

	Multiple File Upload

	Namespaces
	URL layout

	User Subscriptions
	Types of subscriptions

	Editing subscriptions

Administrating MoinMoin

	Requirements
	Servers

	Dependencies

	Clients

	Installation
	Installing the code

	Creating a wiki instance

	Run your wiki instance

	Installation (for developers)
	Clone the git repository

	Installing

	Next Steps

	Troubleshooting

	Server Options
	Built-in Web Server (easy)

	External Web Server (advanced)

	Create and Serve a Static Wiki Image

	Introduction into MoinMoin Configuration
	Kinds of configuration files

	Directory Structure

	wikiconfig.py Layout

	Wiki Engine Configuration
	User Interface Customization

	Authentication

	Transmission security

	Password security

	Authorization

	Secrets

	Groups

	Storage

	Mail configuration

	Framework Configuration

	Logging Configuration

	Changes in MoinMoin

	MoinMoin Version History
	Version 2.0.0alpha

	Upgrading
	From moin < 1.9

	From moin 1.9.x

	Backup and Restore
	Full Backup / Restore

	Selective Backup

	Selective Restore

	Indexes
	General

	Configuration

	moin index subcommand reference

	Building an index for a single wiki

	Building an index for a wiki farm

	Password Resetting/Invalidation
	Resetting one or few password(s)

	Resetting many or all password(s)

	Maintenance
	Reduce Revisions

	Set Metadata

	Validate and Optionally Fix Metadata

	Moin Command Line Interface
	./m Interface

	moin Interface

	See also

Getting Support for and Contributing to MoinMoin

	MoinMoin Supports You
	Free Support

	Commercial Support

	You Support MoinMoin
	Like to help others?

	Found a bug?

	Have an idea?

	Born to code?

	Loving UI / UX design?

	Have good language or documentation skills?

	Translating MoinMoin
	If your language already exists

	If your language doesn’t exist yet

	Note for developers

Developing of MoinMoin

	Development
	Useful Resources

	Requirements for development

	Typical development workflow

	MoinMoin architecture

	How MoinMoin works

	Testing

	Documentation

	Moin Shell

	Package Release on test.pypi.org

Autogenerated API docs

Indices and Tables

	Index

	Module Index

	Search Page

	Glossary

General

About MoinMoin

MoinMoin is a wiki engine written in Python. It is Free and Open Source
Software under GNU GPL v2+. For details please read the License.

Project homepage: https://moinmo.in/

Using MoinMoin, wiki users can easily create and maintain web content from
their browser.

You can use it:

	as an easily-maintained web site

	as a knowledge base

	for taking notes

	for creating documentation

You can use it for:

	your company / organisation, your work group

	your school, college, or university

	your projects and interests

	just yourself

You can run it on:

	a public web server

	an intranet server

	your desktop or laptop

	Linux, Mac OS X, Windows, and other OSes

What makes MoinMoin special?

Moin tries to be a great wiki engine, which encompasses: powerful, extendable and
easy-to-use. We don’t try to be everything, but we don’t try to be
minimalistic either.

There are lots of wiki engines out there, making it hard to pick one.
However, choosing wisely is important because you may have to live with
your choice for a long time because switching wiki engines is not easy.

We won’t list all of moin’s features, because comparing feature lists
is just not enough. Some features are best left unimplemented,
even if they sound great at first. In moin, you will find most
important features like in most major wiki engines. But still, you and your wiki
users might feel quite a different overall experience just because of a bunch
of small, superficial differences. Of course the quality of some features’
implementations can vary greatly. Thus, you have to
try it and play with it, not just look at feature comparisons.

MoinMoin has been around since about 2000.
It has rapidly grown and evolved through moin 1.9.x. Its developers have
increased their experience with Python and wiki technology over the years.
With moin 2.0, there has been a rather revolutionary cleanup / rewrite
of how moin works based on that experience. This promises to make it easier,
cleaner, more consistent, more powerful, more flexible and more
modular.

Moin is written in Python, an easy to read, high-level, object-oriented,
dynamic, well-designed and platform-independent programming language.

Moin is Free Software (that implies that it is Open Source) and,
because we use Python, you may even like to read and modify moin’s code.

Who is using MoinMoin?

This shows some of the better-known users of MoinMoin:

Web Sites

	KernelNewbies, Xen, LinuxWireless, GCC

	Debian, Ubuntu, CentOS

	Apache, Gnome, Wine, OpenOffice, Squid, Exim, Dovecot

	Python, ScyPy, TurboGears

	Mercurial, Darcs

	FSFE, FFII, c-base, MusicBrainz

	linuxwiki.de, jurawiki.de, ooowiki.de and … moinmo.in :D

For links and more sites, please see: https://moinmo.in/MoinMoinWikis

You may also add missing moin-based sites there.

Intranet installations

We know that there are a lot of private intranet installations of
MoinMoin in:

	enterprises, companies

	government and administration

	scientific research facilities, universities, schools

	communities

Unfortunately, we do not have permission to name them here.

Features

Operating System Support

Moin is implemented in Python, a platform-independent language.
It works on Linux, Mac OS X, Windows, FreeBSD and other OSes that support
Python.

That said, Linux is the preferred and most tested deployment platform and
will likely have fewer issues than, for example, Windows.

Servers

	Builtin Python server from werkzeug, which is easy to use.

	Any server that talks WSGI to moin:

	Apache2 with mod_wsgi

	nginx with uwsgi

	IIS with isapi-wsgi (not recommended - if you must use Windows, but have
a choice concerning the web server, please use Apache2).

	Other WSGI servers, see https://wsgi.readthedocs.io/en/latest

	With the help of flup middleware about any other server speaking:

	fastcgi

	scgi

	ajp

	cgi (slow, not recommended)

Authentication

	Builtin - username / password login form of moin, MoinAuth

	Builtin HTTP Basic Auth - browser login form, HTTPAuthMoin

	Auth against LDAP / Active Directory (LDAPAuth)

	Any authentication your web server supports via GivenAuth

Authorization

	Content Access Control Lists (ACLs)

	global, using a mapping, so you can apply ACLs on parts of the namespace

	local, per wiki item

	give rights, such as:

	create, destroy

	read, write, rename

	admin

	to:

	specific users

	specific groups of users

	all logged-in users

	all users

	Function ACLs

Anti-Spam

	Form Ticketing

Storage

Item Types

	we store data of any type, such as text, images, audio, binary

	we separately store any metadata

	everything is revisioned

Storage Backend Types

	file system

	sqlite3

	everything supported by SQLalchemy

	you can easily add your own backend with little code

Serialization

	dump backend contents to a single file

	load backend contents from such a file

Search / Indexing

	important metadata is indexed

	content data is converted (if possible) and indexed

	fast indexed search, fast internal operations

	flexible and powerful search queries

	search current and historical contents

	using a shared index, find content in any farm wiki

User Interface

OO user interface

	Most functionality is done in the same way no matter what type your wiki
item has.

Templating

	Theme support / User interface implemented with templates

Wiki features

	Global History for all items (full list)

	Latest Changes (“Recent Changes”), only lists the latest changes of an item

	Local History for one item (“History”)

	Diffs between any revision

	text item diffs, rendered nicely with html

	image diffs

	binary “diff” (same or not same)

	Tags / Tag Cloud

	Missing Items

	Orphaned Items

	“What refers here?” functionality

	“What did I contribute to?” functionality

	Sitemap

	Macro support

	Multiple names and Namespaces support

Markup support

	Moin Wiki

	Creole

	MediaWiki

	reST

	DocBook XML

	Markdown

	HTML

	plus code / text file highlighting for many formats

Feeds

	Atom

	Google Sitemap

Notification

	by email: smtp or sendmail

Translation / Localization

	currently English and German translations only; no others will be added until
the code and texts for moin2 are more stable

	any localization, provided by babel / pytz

Logging

	Flexible logging provided by logging module of python stdlib

Technologies

	html5, css, javascript with jquery, svg

	python

	flask, flask-caching, flask-babel, flask-theme, click

	whoosh, werkzeug, pygments, flatland, blinker, babel, emeraldtree

	sqlalchemy (supports all popular SQL DBMS), sqlite, kyoto tycoon/cabinet

License

MoinMoin's Copyright and License
================================

Copyright (c) 2000-2006 by Juergen Hermann <jh@web.de>
Copyright (c) 2006-2012 The MoinMoin development team, see
 http://moinmo.in/MoinCoreTeamGroup

MoinMoin is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

See docs/licenses/COPYING for details.

For a FAQ about the GPL and a copy of the misc. GPL license versions,
please see there: http://www.gnu.org/licenses/gpl.html

This is the GNU GPL version 2. From file docs/licenses/COPYING:

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

User Accounts

Accounts provide an easy way for wiki users to identify themselves to MoinMoin and other wiki users,
store personal preferences and track wiki contributions. Account creation is simple and
straightforward, and provides many benefits over browsing and editing anonymously.

Account Creation

To create an account, click the Login button at the top of the page. You will be taken to a login
page allowing you to either log in or create an account. Proceed to the create account page
by clicking the account creation button, and you will be presented with an account creation form.
The fields of this form are as follows:

	Name
	Your username on the wiki. Will appear in the history section of any wiki item which you edit. This is a required field.

	Password
	Your password for logging into your new account. Remember to pick a strong password with a mix
of upper and lower case letters, numbers and symbols. This is also a required field.

	Password
	Enter your new password again (same as the above field). This is a required field to make sure
that your first password entry was correct.

	E-Mail
	The email address which will be associated with your new account. This can be used by the wiki
administrators to contact you or to verify your account if email verification is enabled on
the wiki. This is a required field.

Note

Some wikis require email verification, in which case you will have click an activation link which
will be sent to the email address you provide. You must complete this step before you start using
the wiki.

Other wikis may limit new account creation to administrators only to prevent the creation
of bogus accounts and spamming bots. In this case you will have to contact the administrator
to request an account.

User Settings

User settings provide a way for to customise your MoinMoin experience and perform account
maintenance functions like changing email address or password. To access your settings page, click
the Settings button at the top of the page.

The settings page appears as a list of links to various sub-pages for changing elements of your
wiki experience, each of these sub-pages are listed below:

Personal Settings

Personal settings include wiki language and locale, username and alias.

	Name
	Your username, as it will appear on the wiki and in the history pages of wiki items which you edit.

	Display-Name
	The display name can be used to override your username, so you will still log in using your username
but your display name will be displayed to other users and in your history page.

	Timezone
	Setting this value will display edit times converted to your local time zone. For
example, an edit time of 10AM UTC would appear as 8PM AEST if you changed your time zone to
GMT +10/Australian Eastern Standard Time.

	Locale
	Your preferred language for interacting with MoinMoin. Edit dates and times are formatted based
upon the locale unless the ISO 8601 option is selected under Options.

Change Password

Password changes are recommended if you believe that the password you are using has been compromised.

	Current Password
	Enter the password which you currently use to log into the wiki. This prevents passers-by from
changing the password of a logged in account. This is a required field.

	New Password
	The new password which you would like to use. This is a required field.

	New Password (repeat)
	Enter your new password again. Used to detect typographical errors. This is a required field.

Notification Settings

Notification settings allow you to configure the way MoinMoin notifies you of changes and important
information.

	E-Mail
	Change the email address MoinMoin sends emails to.

Wiki Appearance Settings

Appearance settings allow you to customise the look and feel of the wiki.

	Theme name
	The bundled MoinMoin wiki theme which you would like to use.

	User CSS URL
	If you want to style MoinMoin with custom Cascading Style Sheets (CSS), enter a URL for your
custom stylesheet here. Custom CSS provides an advanced level of control over appearance of
MoinMoin pages.

	Number rows in edit textarea
	The size (in lines) of MoinMoin’s plain text editor when you edit an item. The default of 0
resizes the textarea to hold the entire document being edited.

	History results per page
	The number of edits you will see when you look at the history of an item.

Quick Links

Quick links enable users to add frequently referenced pages to the Navigation links. In most
cases, users will use the “Add Link” or “Remove Link” controls within Item Views to add or
remove quick links to local wiki items. Several different types of links may be added:

	To manually add a link to a local wiki item, prefix the item name with the wiki name: MyWiki/myitem

	To add a link to an external wiki page, use the wiki name as a prefix: MeatBall/RecentChanges

	To add a link to an external web page, use the full URL, e.g.: https://moinmo.in

	Other types of links, such as mailto: may be added

Options

The “Options” section allows you to control privacy and advanced features of MoinMoin.

	Always use ISO 8601 date-time format
	Display dates and times in ISO 8601 format rather than the usual Babel formats
based upon the user’s locale. If the UTC time zone is selected, dates and times
will have a “z” suffix indicating the date or time is a UTC Zulu time.

	Publish my email (not my wiki homepage) in author info
	Control whether or not other wiki users may see your email address.

	Open editor on double click
	This option allows you to simply double click the text on any MoinMoin item and have it opened
in the editor. When using the MoinMoin text editor, the textarea caret will be positioned on
the paragraph that was clicked. If the textarea is larger than the display window, pressing the
right-arrow key will scroll the page so the caret is visible near the bottom of the window.

	Show comment sections
	Show the comment sections for wiki items you view.

	Disable this account forever
	Tick this box if you want to disable your account. Your username or alias will still show in the
history pages of items you have edited, but you will no longer be able to log in using your
account.

Special Features for Users with Accounts

Your User Page

You user page is a wiki space in which you may share information about yourself with other users of
that wiki. It can be accessed by clicking the button with your username on it at the top of the
screen, and is edited like a normal wiki item.

“My Changes”

To view your modifications to a wiki, click on User in the navigation area, then on My Changes.
This will show a list of revisions you have made to wiki items sorted by date-time.

The first column will usually show an icon with a link to a diff showing the changes made at
that revision. If the item was deleted, the icon will have a link to a revert dialog. If the item
has only one revision, the icon will indicate the content type.

The second column will show the item name, aliases, or item ID (if the item was deleted)
at that revision with a link to a revision display.

The remaining columns with display timestamps, sizes, revision numbers, and comments.

Bookmarking

Some MoinMoin users spend a lot of time sifting through the global changes list (accessible via the
History button at the top of every MoinMoin page) looking for unread changes.
To help users remember which revisions they have read and which they have yet to read,
MoinMoin provides bookmarks. If you have read revisions up until the 13th of January, for example, you would
simply click the Set bookmark button next to the revisions from the 13th of January to hide
all revisions from before that date. If you wish to examine those revisions again, navigate back to the
global history page and click Remove bookmark.

Quicklinks

At the top of every MoinMoin page, there is a row of buttons for quick access to commonly used MoinMoin
features like the global index, global history and homepage. Often, users need quick access to MoinMoin
items without having to search for them each time - quicklinks allow you to access your favourite wiki
items at the click of a button by placing links to them at the top of every page. To quicklink an item,
click the Add Link button at the top or bottom of a MoinMoin item. To remove a quicklink,
simply navigate back to the item and click the Remove Link button.

Quicklinks are associated with your account, so you will be able to access them from anywhere by simply
logging into the wiki.

Item Trail

The item trail appears at the top of each page and lists previous items which you have visited. Users
with accounts may view this trail wherever they log in, whereas anonymous users have a different trail
on each computer that they visit.

Subscribing to Items

Subscribing to items allows you to be notified via email when changes are made. To subscribe, navigate
to the item in question and click the Subscribe button at the top or bottom of the page. You
will now receive an email each time a user modifies this item. To unsubscribe, navigate to the item
again and click the Unsubscribe button at the top or bottom of the page.

Logging out

Logging out of your account can prevent account hijacking on untrusted or insecure computers, and is
considered best practice for security. To log out, click the Logout button at the top
of the page. You will be redirected to a page confirming that you have logged out successfully.

Markups Supported by MoinMoin

	Moin Wiki markup overview

	WikiCreole markup overview

	reST (ReStructured Text) Markup

	Docbook XML Markup

	Mediawiki markup overview

	Markdown Markup

In Moin2, you specify the item’s markup language when you create a new item.
Currently Moin2 supports MoinWiki [https://moinmo.in/HelpOnMoinWikiSyntax], WikiCreole [https://www.wikicreole.org/], reStructuredText [https://docutils.sourceforge.io/rst.html], Docbook [https://docbook.org/],
MediaWiki [https://www.mediawiki.org/wiki/Help:Formatting] and Markdown [https://daringfireball.net/projects/markdown/syntax] markups.

Moin2 currently provides output converters for MoinWiki, Markdown,
reST, HTML, and Docbook.
When viewing any markup item, the item may be converted to a different markup
language by clicking the Convert link.

Moin Wiki markup overview

This document describes the features of the moinwiki markup language.
Because this document was created using Restructured Text, which
does not support some of the features available in moinwiki, the
examples below may show both the markup and result as block or
predefined code.

Features currently not working with moin’s Wiki parser are marked
with MOINTODO.

Table Of Contents

Table of contents:

<<TableOfContents()>>

Table of contents (up to 2nd level headings only):

<<TableOfContents(2)>>

Headings

Markup:

= Level 1 =
== Level 2 ==
=== Level 3 ===
==== Level 4 ====
===== Level 5 =====
====== Level 6 ======

Result:

Level 1

Intentionally not rendered as level 1 so as to not interfere with Sphinx’s indexing

Level 2

Level 3

Level 4

Level 5

Level 6

	Notes:
	
	Closing equals signs are compulsory.

	Also, whitespace between the first word of the heading and the
opening equals sign will not be shown in the output (ie. leading
whitespace is stripped).

Text formatting

The following is a table of inline markup that can be used to control text
formatting in Moin.

	Markup

	Result

	'''Bold Text'''

	Bold text

	''Italic''

	Italic

	'''''Bold Italic'''''

	Bold Italic

	`Monospace`

	Monospace

	{{{Code}}}

	Code

	__Underline__

	Underline

	^Super^Script

	Super Script

	,,Sub,,Script

	Sub Script

	~-Smaller-~

	Smaller

	~+Larger+~

	Larger

	--(Stroke)--

	Stroke

Hyperlinks

Moin2 hyperlinks are enclosed within double brackets. There are three possible
fields separated by “|” characters:

1. PageName, relative URL, fully qualified URL, or interwiki link
2. Text description or transcluded icon: [[ItemName|{{MyLogo.png}}]]
3. Parameters: target, title, download, class, and accesskey are supported

The special CSS class redirect may be used to immediately redirect the browser
to an internal or external page. Once placed inside an item,
that item cannot be viewed as redirection is immediate. To edit the item,
type …/+modify/ItemName in the browsers address bar.

Examples with parameters are not shown below because the effect cannot be
duplicated with reST markup. To open a link in a new tab or window with a
mouseover title, do:

* [[ItemName|my favorite item|target=_blank,title="Go There!"]]

Internal Links

Internal links for namespaces work the same as an item in the default namespace with subitems.
Links without a leading / or ../ refer to an item in the top level of the default namespace,
even if the current item is not in the default namespace.
Links with a leading / refer to a subitem of the current item. Links with a leading ../
refer to a sibling of the current item.

	Markup

	Result

	Comments

	[[ItemName]]

	ItemName

	Link to an item

	[[ItemName|Named Item]]

	Named Item

	Named link to an internal item

	[[#AnchorName]]

	#AnchorName

	Link to an anchor in the current item

	[[#AnchorName|AnchorName]]

	AnchorName

	Link to a named anchor

	[[ItemName#AnchorName]]

	ItemName#AnchorName

	Link to an anchor in an internal item

	[[ItemName#AnchorName|Named Item1]]

	Named Item1

	Named link to an anchor in an internal item

	[[../SiblingItem]]

	../SiblingItem

	Link to a sibling of the current item

	[[/SubItem]]

	/SubItem

	Link to a sub-item of current item

	[[Home/ItemName]]

	Home/ItemName

	Link to a subitem of Home item

	[[/filename.txt]]

	/filename.txt

	Link to a sub-item called Filename.txt

	[[users/JoeDoe]]

	users/JoeDoe

	Link to a user’s home item in user namespace

	[[AltItem||class="redirect"]]

	AltItem is displayed immediately

	Type /+modify/<item> in address bar to edit

External Links

	Markup

	Result

	Comments

	[[https://moinmo.in/]]

	https://moinmo.in/

	External link

	[[https://moinmo.in/|MoinMoin Wiki]]

	MoinMoin Wiki [https://moinmo.in/]

	Named External link

	[[MeatBall:InterWiki]]

	MeatBall:InterWiki [http://meatballwiki.org/wiki/InterWiki]

	Link to an item on an external Wiki

	[[MeatBall:InterWiki|InterWiki page on MeatBall]]

	InterWiki page on MeatBall [http://meatballwiki.org/wiki/InterWiki]

	Named link to an item on an external Wiki

	[[mailto:user@example.com]]

	mailto:user@example.com

	Mailto link

Images and Transclusions

Transclusion syntax is defined as follows:

{{<target>|<optional alternate text>|<optional parameters>}}

{{bird.jpg|rare yellow bird|class=center}}

	<target> is a relative or absolute URL pointing to an image, video, audio, or web page.

	<optional alternate text> has several potential uses:

	Screen readers used by visually impaired users will speak the text.

	The alternate text may be displayed by the browser if the URL is broken.

	Search engine crawlers may use the text to index the page or image.

	optional parameters may be used to resize or position the target.

	the browser will automatically resize the image to fit the enclosing container
by specifying either class=resize or width=100% height=auto

	Images or other targets can be resized on the client side by specifying
an option of width=nn or height=nn where nn is the desired size in pixels.

	If Pillow is installed on the server, JPEG (or JPG) images can be resized
on the server by specifying an option of &w=nn or &h=nn where nn is the
desired size in pixels.

	Images embedded within text can be positioned relative to a line of text by
using class=bottom, class=top or class=”middle”.

	Images displayed as block elements my be floated left or right by using
class=”left” or class=right respectively, or centered by using class=center.

	Markup

	Comment

	text {{example.png}} text

	Embed example.png inline

	text {{example.png||class=top height=96}} text

	Embed example.png inline

	{{example.png||class=center}}

	example.png as centered image

	{{https://static.moinmo.in/logos/moinmoin.png}}

	example.png aligned left, not float

	{{ItemName}}

	Transclude (embed the contents of)
ItemName

	{{/SubItem}}

	Transclude SubItem

	{{ example.jpg || class=resize }}

	browser will automatically resize
image to fit the enclosing container

	{{ example.jpg || width=20, height=100 }}

	Resizes example.png by using HTML
tag attributes

	{{ example.jpg || &w=20 }}

	Resizes example.png by using server-
side compression, requires PIL

	{{ https://moinmo.in/ || width=800 }}

	Resizes the object which is
embedded using HTML tags. Here markup
like &w=800 will not work.

Extra Info:

Markup like {{ example.jpg || &w=20 }}, simply adds &w to the
src URL of the image, the Python Imaging Library (PIL)
understands that it has to compress the image on the server side and
render as shrinked to size 20.

For markup like {{ example.jpg || width=20, height=100 }} we
currently allow only the width and height (anything
else is ignored) to be added as attributes in the HTML, however
one can, add anything to the query URL using &, like &w
in the example above.

Most browsers will display a large blank space when a web page using
an https protocol is transcluded into a page using http protocol.
Transcluding a png image using an https protocol into an http protocol
page displays OK in all browsers.

Blockquotes and Indentations

Markup:

indented text
 text indented to the 2nd level

Result:

	indented text
	text indented to the 2nd level

Lists

Warning

	All Moin Wiki list syntax (including that for unordered lists,
ordered lists and definition lists) requires a leading space before
each item in the list.

	Unfortunately, reStructuredText does not allow leading whitespace
in code samples, so the example markup here will not work if copied
verbatim, and requires
that each line of the list be indented by one space in order to
be valid Moin Wiki markup.

	This is also an reSTTODO

Unordered Lists

Markup:

* item 1
* item 2 (preceding white space)
 * item 2.1
 * item 2.1.1
* item 3
 . item 3.1 (bulletless)
. item 4 (bulletless)
 * item 4.1
 . item 4.1.1 (bulletless)

Result:

	item 1

	item 2 (preceding white space)

	item 2.1

	item 2.1.1

	item 3

	item 3.1 (bulletless)

	item 4 (bulletless)

	item 4.1

	item 4.1.1 (bulletless)

	Note:
	
	Moin markup allows a square, white and a bulletless item for
unordered lists, these cannot be shown in reST documents.

Ordered Lists

With Numbers

Markup:

1. item 1
 1. item 1.1
 1. item 1.2
1. item 2

Result:

	item 1

	item 1.1

	item 1.2

	item 2

With Roman Numbers

Markup:

I. item 1
 i. item 1.1
 i. item 1.2
I. item 2

Result:

I. item 1

 i. item 1.1

 ii. item 1.2

II. item 2

With Letters

Markup:

A. item 1
 a. item 1.1
 a. item 1.2
A. item 2

Result:

	item 1

	item 1.1

	item 1.2

	item 2

Specify a Starting Point

When there is a need to start an ordered list at a specific number,
use the format below. This works for ordered lists using letters and
roman numerals.

Markup:

1.#11 eleven
1. twelve
 i.#11 roman numeral xi
1. thirteen

A.#11 letter K
A. letter J

Result:

11. eleven
12. twelve
 xi.roman numeral xi
13. thirteen

K. letter K
J. letter J

Definition Lists

Markup:

term:: definition
object::
:: description 1
:: description 2

Result:

	term
	definition

	object
	
description 1

description 2

	Notes:
	
	reStructuredText does not support multiple definitions for a
single term, so a line break has been forced to illustrate the
appearance of several definitions.

	Using the prescribed Moin Wiki markup will, in fact, produce two
separate definitions in MoinMoin (using separate <dd> tags).

Horizontal Rules

To create a horizontal rule, start a line with 4 or more hyphen (-) characters. Nine (or more) characters creates a line of maximum height.

Markup:

Text

Text

Result:

Text

Text

Tables

Moin wiki markup supports table headers and footers. To indicate the
first row(s) of a table is a header, insert a line of 3 or more =
characters. To indicate a footer, include a second line of =
characters after the body of the table.

Markup:

||Head A ||Head B ||Head C ||
=============================
||a ||b ||c ||
||x ||y ||z ||

Result:

	Head A

	Head B

	Head C

	a

	b

	c

	x

	y

	z

Table Styling

To add styling to a table, enclose one or more parameters within angle
brackets at the start of any table cell. Options for tables must be
within first cell of first row. Options for rows must be within first
cell of the row. Separate multiple options with a blank character.

	Markup

	Effect

	<tableclass=”zebra moin-sortable”>

	Adds one or more CSS classes to the table

	<rowclass=”orange”>

	Adds one or more CSS classes to the row

	<class=”green”>

	Adds one or more CSS classes to the cell

	<tablestyle=”color: red;”>

	Add CSS styling to table

	<rowstyle=”font-size: 140%; “>

	Add CSS styling to row

	<style=”text-align: right;”>

	Add CSS styling to cell

	<bgcolor=”#ff0000”>

	Add CSS background color to cell

	<rowbgcolor=”#ff0000”>

	Add CSS background color to row

	<tablebgcolor=”#ff0000”>

	Add CSS background color to table

	width

	Add CSS width to cell

	tablewidth

	Add CSS width to table

	id

	Add HTML ID to cell

	rowid

	Add HTML ID to row

	tableid

	Add HTML ID to table

	rowspan

	Add HTML rowspan attribute to cell

	colspan

	Add HTML colspan attribute to cell

	caption

	Add HTML caption attribute to table

	<80%>

	Set cell width, setting one cell effects entire table column

	<(>

	Align cell contents left

	<)>

	Align cell contents right

	<:>

	Center cell contents

	<|2>

	Cell spans 2 rows (omit a cell in next row)

	<-2>

	Cell spans 2 columns (omit a cell in this row)

	<#0000FF>

	Change background color of a table cell

	<rowspan=”2”>

	Same as <|2> above

	<colspan=”2”>

	Same as <-2> above

	– no content –

	An empty cell has same effect as <-2> above

	===

	A line of 3+ “=” separates table header, body and footer

Table Styling Example

Markup:

||Head A||Head B||
===
	normal text		normal text		
	<	2>cell spanning 2 rows		cell in the 2nd column	
	cell in the 2nd column of the 2nd row				
	<rowstyle="font-weight: bold;" class="monospaced">monospaced text		bold text		

||<tableclass="no-borders">A||B||C||
||D||E||F||

Result:

	Head A

	Head B

	normal text

	normal text

	cell spanning 2 rows

	cell in the 2nd column

	cell in the 2nd column of the 2nd row

	monospaced text

	bold text

A B C

D E F

Verbatim Display

To show plain text preformatted code, just enclose the text in
three or more curly braces.

Markup:

{{{
no indentation example
}}}

 {{{{
 {{{
 indentation; using 4 curly braces to show example with 3 curly braces
 }}}
 }}}}

Result:

no indentation example

 {{{
 indentation; using 4 curly braces to show example with 3 curly braces
 }}}

Parsers

Syntax Highlighting

Markup:

{{{#!highlight python
def hello():
 print "Hello World!"
}}}

Result:

def hello():
 print "Hello, world!"

creole, rst, markdown, docbook, and mediawiki

To add a small section of markup using another parser, follow
the example below replacing “creole” with the target parser
name. The moinwiki parser does not have the facility to place
table headings in the first column, but the creole parser can
be used to create the desired table.

Markup:

{{{#!creole
|=X|1
|=Y|123
|=Z|12345
}}}

Result:

	X

	1

	Y

	123

	Z

	12345

csv

The default separator for CSV cells is a semi-colon (;). The
example below specifies a comma (,) is to be used as the separator.

Markup:

{{{#!csv ,
Fruit,Color,Quantity
apple,red,5
banana,yellow,23
grape,purple,126
}}}

Result:

	Fruit

	Color

	Quantity

	apple

	red

	5

	banana

	yellow

	23

	grape

	purple

	126

wiki

The wiki parser is the moinwiki parser. If there is a need to
emphasize a section, pass some predefined classes to the wiki
parser.

Markup:

{{{#!wiki solid/orange
* plain
* ''italic''
* '''bold'''
* '''''bold italic.'''''
}}}

Result:

	plain

	‘’italic’’

	‘’’bold’’’

	‘’’’’bold italic.’’’’’

Admonitions

Admonitions are used to draw the reader’s attention to an important
paragraph. There are nine admonition types: attention, caution,
danger, error, hint, important, note, tip, and warning.

Markup:

{{{#!wiki caution
'''Don't overuse admonitions'''

Admonitions should be used with care. A page riddled with admonitions
will look restless and will be harder to follow than a page where
admonitions are used sparingly.
}}}

Result:

Caution

‘’’Don’t overuse admonitions’’’

Admonitions should be used with care. A page riddled with admonitions
will look restless and will be harder to follow than a page where
admonitions are used sparingly.

CSS classes for use with the wiki parser, tables, comments, and links

	Background colors: red, green, blue, yellow, or orange

	Borders: solid, dashed, or dotted

	Text-alignment: left, center, right, or justify

	Admonitions: attention, caution, danger, error, hint, important, note, tip, warning

	Tables: moin-sortable, no-borders

	Comments: comment

	Position parsers and tables: float-left, float-right, inline, middle, clear-right, clear-left or clear-both

	Links with browser redirection: redirect

Variables

Variables within the content of a moin wiki item are transformed
when the item is saved. An exception is if the item has a tag of
‘’’template’’’, then no variables are processed. This makes variables
particularly useful within template items. Another frequent use is to
add signatures (@SIG@) to a comment within a discussion item.

Variable expansion is global and happens everywhere within an
item, including code displays, comments, tables, headings, inline
parsers, etc.. Variables within transclusions are not expanded
because they are not part of the including item’s content.

TODO: Allow wiki admins and users to add custom variables.
There is no difference between system date format and user date
format in Moin 2, fix code or docs.

Predefined Variables

	Variable

	Description

	Resulting Markup

	Example Rendering

	@PAGE@

	Name of the item (useful for templates)

	HelpOnPageCreation

	HelpOnPageCreation

	@ITEM@

	Name of the item (useful for templates)

	HelpOnPageCreation

	HelpOnPageCreation

	@TIMESTAMP@

	Raw time stamp

	2004-08-30T06:38:05Z

	2004-08-30T06:38:05Z

	@DATE@

	Current date in the system format

	<<Date(2004-08-30T06:38:05Z)>>

	<<Date(2004-08-30T06:38:05Z)>>

	@TIME@

	Current date and time in the user format

	<<DateTime(2004-08-30T06:38:05Z)>>

	<<DateTime(2004-08-30T06:38:05Z)>>

	@ME@

	user’s name or “anonymous”

	TheAnarcat

	TheAnarcat

	@USERNAME@

	user’s name or his domain/IP

	TheAnarcat

	TheAnarcat

	@USER@

	Signature “– loginname”

	– TheAnarcat

	– TheAnarcat

	@SIG@

	Dated Signature “– login name date time”

	– TheAnarcat <<DateTime(…)>>

	– TheAnarcat <<DateTime(2004-08-30T06:38:05Z)>>

	@EMAIL@

	<<MailTo()>> macro, obfuscated email

	<<MailTo(user AT example DOT com)

	user@example.com OR user AT example DOT com

	@MAILTO@

	<<MailTo()>> macro

	<<MailTo(testuser@example.com)

	testuser@example.com, no obfuscation

Notes:

	@PAGE@ and @ITEM@ results are identical, item being a moin 2
term and page a moin 1.x term.

	If an editor is not logged in, then any @EMAIL@ or @MAILTO@
variables in the content are made harmless by inserting a space
character. This prevents a subsequent logged in editor from adding
his email address to the item accidentally.

Macros

Macros are extensions to standard markup that allow developers to add
extra features. The following is a table of MoinMoin’s macros.

	Markup

	Comment

	<<Anchor(anchorname)>>

	Inserts an anchor named “anchorname”

	<
>

	Inserts a forced linebreak

	<<Date()>>

	Inserts current date, or unix timestamp or ISO 8601 date

	<<DateTime()>>

	Inserts current datetime, or unix timestamp or ISO 8601

	<<GetText(Settings)>>

	Loads I18N texts, Einstellungen if browser is set to German

	<<GetVal(WikiDict,var1)>>

	Loads var1 value from metadata of item named WikiDict

	<<FootNote(Note here)>>

	Inserts a footnote saying “Note here”

	<<FontAwesome(name,color,size)>>

	Displays Font Awsome icon, color and size are optional

	<<Icon(my-icon.png)>>

	Displays icon from /static/img/icons

	<<Include(ItemOne/SubItem)>>

	Embeds the contents of ItemOne/SubItem inline

	<<ItemList()>>

	Lists subitems of current item, see notes for options

	<<MailTo(user AT example DOT org,
write me)>>

	If the user is logged in this macro will display
user@example.org, otherwise it will display the
obfuscated email address supplied
(user AT example DOT org)
The second parameter containing link text is optional.

	<<MonthCalendar()>>

	Shows a monthly calendar in a table form,
see notes for details

	<<RandomItem(3)>>

	Inserts names of 3 random items

	<<ShowIcons()>>

	Displays all icons in /static/img/icons directory

	<<ShowSmileys()>>

	Displays available smileys and the corresponding markup

	<<ShowUserGroup()>>

	Displays metadata defined in usergroup attribute

	<<ShowWikiDict()>>

	Displays metadata defined in wikidict attribute

	<<TableOfContents(2)>>

	Shows a table of contents up to level 2

	<<TitleIndex()>>

	Lists all itemnames for the namespace of the current item,
grouped by initials

	<<Verbatim(`same` __text__)>>

	Inserts text as entered, no markup rendering

Notes

Date and DateTime macros accept integer timestamps and ISO 8601 formatted date-times:

	<<Date(1434563755)>>

	<<Date(2002-01-23T12:34:56)>>

Footnotes are created by placing the macro within text. By default footnotes are placed at the bottom
of the page. Explicit placement of footnotes is accomplished by calling the macro without a parameter.

	text<<FootNote(A macro is enclosed in double angle brackets, and’’’may’’’ have markup.)>> more text

	<<FootNote()>>

The FontAwesome macro displays FontAwesome fonts. See https://fontawesome.com/search?o=r&m=free
for the list of fonts available with FontAwesome version 6.

The FontAwesome “name” parameter may include multiple space-separated names.
The free fonts are divided into 3 groups: solid, regular (outline), and brands. If the name field consists of
a single font name, then the font from the solid group is displayed. To display a font from the regular group,
add “regular” to the name field. To display a font from the brands group, add “brands”.

The FontAwesome color field may be an HTML color name or a hex digit color code with a leading #:
#f00 or #F80000.
The size field must be an unsigned decimal integer or float that will adjust the size of the character
relative to the current font size: 2 or 2.0 will create double the character size, .5 will create a character
half the current size.

	<<FontAwesome(thumbs-up,#f00,2)>> is similar to

	<<FontAwesome(regular thumbs-up,red,2)>> but different from these spinners

	<<FontAwesome(spin spinner,plum,2.5)>> <<FontAwesome(fan spin-reverse,orange,2.5)>>

The Include macro <<Include(my.png)>> produces results identical to the transclusion {{my.png}}.
It is more flexible than a transclusion because it supports multiple parameters and the first parameter may
be any regrex starting with a ^. The include macro accepts 3 parameters where the second parameter is a
heading and the third parameter a heading level between 1 and 6:

	<<Include(^zi)>> embeds all wiki items starting with zi.

	<<Include(moin.png,My Favorite icon, 6)>>

The ItemList macro accepts multiple named parameters: item, startswith, regex, ordered and display.

	<<ItemList(item=”Foo”)>> lists subitems of Foo item

	<<ItemList(ordered=’True’)>> displays ordered list of subitems, default is unordered

	<<ItemList(startswith=”Foo”)>> lists subitems starting with Foo

	<<ItemList(regex=”Foo$”)>> lists subitems ending with Foo

	<<ItemList(skiptag=”template”)>> ignore items with this tag

	<<ItemList(display=”FullPath”)>> default, displays full path to subitems

	<<ItemList(display=”ChildPath”)>> displays last component of the FullPath, including the ‘/’

	<<ItemList(display=”ChildName”)>> displays subitem name

	<<ItemList(display=”UnCameled”)>> displays “fooBar” as “foo Bar”

The MonthCalendar macro accepts multiple named parameters: item, year, month, month_offset,
fixed_height and anniversary.

	<<MonthCalendar>> Calendar of current month for current page

	<<MonthCalendar(month_offset=-1)>> Calendar of last month

	<<MonthCalendar(month_offset=+1)>> Calendar of next month

	<<MonthCalendar(item=”SampleUser”,month=12)>> Calendar of Page SampleUser, this year’s december

	<<MonthCalendar(month=12)>> Calendar of current Page, this year’s december

	<<MonthCalendar(year=2022,month=12)>> Calendar of December, 2022

Smileys and Icons

This table shows moin smiley markup, the rendering of smiley icons cannot be shown in Rest markup.

	X-(

	:D

	<:(

	:o

	:(

	:)

	B)

	:))

	;)

	/!\

	<!>

	(!)

	:-?

	:\

	>:>

	|)

	:-(

	:-)

	B-)

	:-))

	;-)

	|-)

	(./)

	{OK}

	{X}

	{i}

	{1}

	{2}

	{3}

	{*}

	{o}

	

Comments

There are three ways to add comments to a page. Lines starting with ##
can be seen only by page editors. Phrases enclosed in /* and */
and wiki parser section blocks of text with a class of “comment” may
be hidden or visible depending upon user settings or actions.

Markup:

Lines starting with "##" may be used to give instructions
to future page editors.

Click on the "Comments" button within Item Views to toggle the /* comments */ visibility.

{{{#!wiki comment/dashed
This is a wiki parser section with class "comment dashed".

Its visibility gets toggled by clicking on the comments button.
}}}

Result:

Click on the “Comments” button within Item Views to toggle the visibility.

	Notes:
	
	The toggle display feature does not work on reST documents, so there is
no way to see the hidden comments.

WikiCreole markup overview

Features currently not working with moin’s WikiCreole parser are marked with CREOLETODO.

Features currently not working with moin’s rst parser are marked with reSTTODO.

Headings

Markup:

= Level 1
== Level 2
=== Level 3
==== Level 4
===== Level 5
====== Level 6

Result:

Level 1

Intentionally not rendered as level 1 so it does not interfere with Sphinx’s indexing

Level 2

Level 3

Level 4

Level 5

Level 6

Notes:

Closing equals signs are optional and do not affect the output.
Also, whitespace between the first word of the heading and the opening equals sign will not be shown in the output (ie. leading whitespace is stripped).

Text formatting

The following is a table of inline markup that can be used to format text in Creole.

	Markup

	Result

	Bold Text

	Bold text

	//Italic Text//

	Italic Text

	//**Bold and Italic**//

	Bold and Italic

	__Underline__

	Underline

	{{{Monospace}}}

	Monospace

	First line\\Second line

	
First line

Second line

reSTTODO: Restructured Text line blocks are not working in Moin2

Hyperlinks

Internal links

	Markup

	Result

	Comment

	[[ItemName]]

	Item name

	Link to an item

	[[ItemName|Named Item]]

	Named Item

	Named link to an internal item

	[[#AnchorName]]

	#AnchorName

	Link to an anchor in the current item

	[[#AnchorName|Named anchor]]

	Named anchor

	Link to a named anchor.

	[[ItemName#AnchorName]]

	ItemName#AnchorName

	Link to an anchor in an internal item

	[[ItemName/SubItem]]

	ItemName/Subitem

	Link to a sub-item of an internal item

	[[../SiblingItem]]

	../SiblingItem

	Link to a sibling of the current item

	[[/SubItem]]

	/SubItem

	Link to a sub-item

	[[attachment:Filename.txt]]

	Filename.txt

	Link to a sub-item called Filename.txt.
Note that this is for MoinMoin 1.x
compatability and is deprecated in favour
of the more convenient [[/SubItem]]
syntax

External links

	Markup

	Result

	Comment

	http://www.example.com

	http://www.example.com

	External link

	[[http://www.example.com]]

	http://www.example.com

	External link

	[[MeatBall:InterWiki|InterWiki item on MeatBall]]

	InterWiki item on MeatBall [http://meatballwiki.org/wiki/InterWiki]

	Link to an item on an external Wiki

	[[mailto:user@example.org]]

	mailto:user@example.org

	Mailto link

Images and Transclusions

	Markup

	Comment

	{{example.png}}

	Embed example.png inline

	{{example.png|Alt text}}

	Embed example.png inline or display
“Alt text” if not available

	{{ItemName}}

	Transclude (embed the contents of)
ItemName inline.

	{{/SubItem}}

	Transclude SubItem inline.

Paragraphs

Markup:

You can leave an empty line to start a new paragraph.

Single breaks are ignored.
To force a line break, use <
> or \\.

Result:

You can leave an empty line to start a new paragraph.

Single breaks are ignored. To force a line break, use

or

.

reSTTODO: reStructuredText line blocks are not working in Moin2

Horizontal rules

Markup:

A horizontal rule can be added by typing four dashes.

This text will be displayed below the rule.

Result:

A horizontal rule can be added by typing four dashes.

This text will be displayed below the rule.

Preformatted text

Markup:

{{{
This text will [[escape]] **special** WikiCreole //markup//
 It will also preserve indents

And whitespace.
}}}
~[[This text will not be a link, because it uses the tilde (~) escape character]]

Result:

This text will [[escape]] **special** WikiCreole //markup//
 It will also preserve indents

And whitespace.

[[This text will not be a link, because it uses the tilde (~) escape character]]

Notes:

This tilde character (~) makes the parser ignore the character following it, which can be used to prevent links from appearing as links or prevent bold text from appearing as bold. For example “~**Not bold~**” would output “**Not bold**”).

Syntax Highlighting

Markup:

{{{
#!python
#Python syntax highlighting
import this

def spam():
 print('Spam, glorious spam!')

spam()
}}}

Result:

#Python syntax highlighting
import this

def spam():
 print('Spam, glorious spam!')

spam()

CREOLETODO:The use of syntax highlighting currently crashes moin.

Lists

Ordered lists

Ordered lists are formed of lines that start with number signs (#).
The number of ‘#’ signs at the beginning of a line determines the current level.

Markup:

First item
Second item
First item (second level)
Second item (second level)
First item (third level)
Third item

Result:

	First item

	Second item

	First item (second level)

	Second item (second level)

	First item (third level)

	Third item

Unordered lists

Markup:

* List item
* List item
** List item (second level)
*** List item (third level)
* List item

Result:

	List item

	List item

	List item (second level)

	List item (third level)

	List item

Mixed lists

Markup:

First item
Second item
** Bullet point one
** Bullet point two
Third item
Fourth item

Result:

	First item

	Second item

	Bullet point one

	Bullet point two

	Third item

	Fourth item

Tables

Markup:

|= Header one |= Header two |
| Cell one | Cell two
| Cell three | Cell four |

Result:

	Header one

	Header two

	Cell one

	Cell two

	Cell three

	Cell four

Notes:

Table cells start with a pipe symbol (|), and header cells start with a pipe symbol and equals sign (|=).
The closing pipe symbol at the end of a row is optional.

Macros

Macros are extensions to standard Creole markup that allow developers to add
extra features. The following is a table of MoinMoin’s Creole macros.

	Markup

	Comment

	<<Anchor(anchorname)>>

	Inserts an anchor named “anchorname”

	<
>

	Inserts a forced linebreak

	<<Date()>>

	Inserts current date, or unix timestamp or ISO 8601 date

	<<DateTime()>>

	Inserts current datetime, or unix timestamp or ISO 8601

	<<GetText(Settings)>>

	Loads I18N texts, Einstellungen if browser is set to German

	<<GetVal(WikiDict,var1)>>

	Loads var1 value from metadata of item named WikiDict

	<<FootNote(Note here)>>

	Inserts a footnote saying “Note here”

	<<FontAwesome(name,color,size)>>

	displays Font Awsome icon, color and size are optional

	<<Icon(my-icon.png)>>

	displays icon from /static/img/icons

	<<Include(ItemOne/SubItem)>>

	Embeds the contents of ItemOne/SubItem inline

	<<ItemList()>>

	Lists subitems of current item, see notes for options

	<<MailTo(user AT example DOT org,
write me)>>

	If the user is logged in this macro will display
user@example.org, otherwise it will display the
obfuscated email address supplied
(user AT example DOT org)
The second parameter containing link text is optional.

	<<MonthCalendar()>>

	Shows a monthly calendar in a table form,
see notes for details

	<<RandomItem(3)>>

	Inserts names of 3 random items

	<<ShowIcons()>>

	displays all icons in /static/img/icons directory

	<<TableOfContents(2)>>

	Shows a table of contents up to level 2

	<<Verbatim(`same` __text__)>>

	Inserts text as entered, no markup rendering

Notes

Date and DateTime macros accept integer timestamps and ISO 8601 formatted date-times:

	<<Date(1434563755)>>

	<<Date(2002-01-23T12:34:56)>>

Footnotes are created by placing the macro within text. By default footnotes are placed at the bottom
of the page. Explicit placement of footnotes is accomplished by calling the macro without a parameter.

	text<<FootNote(A macro is enclosed in double angle brackets, and’’’may’’’ have markup.)>> more text

	<<FootNote()>>

FontAwesome color must be a hex digit color code of either 3 or 6 digits with a leading #: #f00 or #F80000.
FontAwesome size must be an unsigned decimal integer or float that will adjust the size of the character
relative to the current font size: 2 or 2.0 will create double the character size, .5 will create a character
half the current size. Font awesome experts will know about the special “fa” class and the “fa-” name prefixes.
It is acceptable, but not necessary to provide these. See https://fontawesome.com/v4/cheatsheet/

	<<FontAwesome(thumbs-up,#f00,2)>> is identical to

	<<FontAwesome(fa fa-thumbs-up fa-2x,#FF0000)>>

The Include macro <<Include(my.png)>> produces results identical to the transclusion {{my.png}}.
It is more flexible than a transclusion because it supports multiple parameters and the first parameter may
be any regrex starting with a ^. The include macro accepts 3 parameters where the second parameter is a
heading and the third parameter a heading level between 1 and 6:

	<<Include(^zi)>> embeds all wiki items starting with zi.

	<<Include(moin.png,My Favorite icon, 6)>>

The ItemList macro accepts multiple named parameters: item, startswith, regex, ordered and display.

	<<ItemList(item=”Foo”)>> lists subitems of Foo item

	<<ItemList(ordered=’True’)>> displays ordered list of subitems, default is unordered

	<<ItemList(startswith=”Foo”)>> lists subitems starting with Foo

	<<ItemList(regex=”Foo$”)>> lists subitems ending with Foo

	<<ItemList(skiptag=”template”)>> ignore items with this tag

	<<ItemList(display=”FullPath”)>> default, displays full path to subitems

	<<ItemList(display=”ChildPath”)>> displays last component of the FullPath, including the ‘/’

	<<ItemList(display=”ChildName”)>> displays subitem name

	<<ItemList(display=”UnCameled”)>> displays “fooBar” as “foo Bar”

The MonthCalendar macro accepts multiple named parameters: item, year, month, month_offset,
fixed_height and anniversary.

	<<MonthCalendar>> Calendar of current month for current page

	<<MonthCalendar(month_offset=-1)>> Calendar of last month

	<<MonthCalendar(month_offset=+1)>> Calendar of next month

	<<MonthCalendar(item=”SampleUser”,month=12)>> Calendar of Page SampleUser, this year’s december

	<<MonthCalendar(month=12)>> Calendar of current Page, this year’s december

	<<MonthCalendar(year=2022,month=12)>> Calendar of December, 2022

reST (ReStructured Text) Markup

Depending upon your source, this document may have been created by
the Moin2 reST parser (Docutils) or the Sphinx reST parser. These parsers
have slight differences in the rendering of reST markup, some of those differences
are noted below.

The purpose of this document is to define the features of the Moin2 reST (Docutils)
parser. The Sphinx extensions to reST markup that are not supported
by the Docutils parser are not included here.

See the the Docutils Restructured Text documentation for more information.

Headings

Rather than imposing a fixed number and order of section title adornment styles,
the order enforced will be the order as encountered.
The first style encountered will be an outermost title (like HTML H1), the
second style will be a subtitle, the third will be a subsubtitle, and so on.

The underline below the title must at least be equal to the length of the title itself.
Failure to comply results in messages on the server log. Skipping a heading
(e.g. putting an H5 heading directly under an H3) results in a rendering error and an
error message will be displayed instead of the expected page.

If any markup appears before the first heading on a page, then the first heading
will be an H2 and all subsequent headings will be demoted by 1 level.

Markup:

=======
Level 1
=======

Level 2
=======

levels 1 and 2 are not shown below, see top of page and this section heading.

Level 3

Level 4

Level 5
:::::::

Level 6
+++++++

Result:

Level 3

Level 4

Level 5

Level 6

Table of Contents

Markup:

.. contents::

Result:

Contents

	reST (ReStructured Text) Markup

	Headings

	Level 3

	Level 4

	Level 5

	Level 6

	Table of Contents

	Text formatting

	Hyperlinks

	External Links

	Internal Links

	Images

	Figures

	Blockquotes and Indentations

	Lists

	Unordered Lists

	Ordered Lists

	Definition Lists

	Field Lists

	Option lists

	Transitions

	Backslash Escapes

	Tables

	Simple Tables

	Grid Tables

	Admonitions

	Comments

	Literal Blocks

	Line Blocks

The table of contents may appear above or floated to the right side due to CSS styling.

Text formatting

The following is a table of inline markup that can be used to format text in Moin.

	Markup

	Result

	Bold Text

	Bold text

	Italic

	Italic

	``Inline Literals``

	Inline Literals

	nested markup is not supported

	nested markup is not supported

Hyperlinks

External Links

	Markup

	Result

	https://www.python.org/

	https://www.python.org/

	``External hyperlinks, like Python <https://www.python.org/>`_``|External hyperlinks, like `Python

	
	External hyperlinks, like Moin_. |External hyperlinks, like Moin_.
	

.. _Moin: http://moinmo.in/ |.. _Moin: http://moinmo.in/

Internal Links

	Markup

	Result

	http:Home link to a page in this wiki

	http:Home link to a page in this wiki

	`Home <http:Home>`_ link to a page in this wiki

	Home [http:Home] link to a page in this wiki

	Headings_ link to heading anchor on this page

	Headings link to heading anchor on this page

	`Internal Links`_ link to heading with embedded blanks

	Internal Links link to heading with embedded blanks

	.. _myanchor: create anchor, real anchor is above this table

	create anchor, real anchor is above this table

	myanchor_ link to above anchor

	myanchor link to above anchor

	Notes:
	
	If this page was created by Sphinx, none of the above internal link examples work correctly.

	The “.. _myanchor:” directive must begin in column one.

	Section titles (or headings) automatically generate hyperlink targets (the title
text is used as the hyperlink name).

Images

Images may be positioned by using the align parameter with a value of left, center, or right.
There is no facility to embed an image within a paragraph. There must be a blank line before
and after the image declaration. Images are not enclosed within a block level element so
several images declared successively without any positioning will display in a horizontal row.

Markup:

Before text.

.. image:: png
 :height: 100
 :width: 200
 :scale: 50
 :alt: alternate text png
 :align: center

After text.

Result:

Before text.

[image: alternate text png]
After text.

	Notes:
	
	The Sphinx parser does not have an image named “png” so the alternate text
will be displayed.

Figures

Figures display graphics like images, but have the added feature of supporting captions
and explanatory text. Figures are block elements, so figures declared successively
will display in a column.

Markup:

Before text.

.. figure:: png
 :height: 100
 :width: 200
 :scale: 50
 :alt: alternate text png

 Moin Logo

 This logo replaced the "MoinMoin Man"
 logo long ago.

After text.

Result:

Before text.

[image: alternate text png]

Moin Logo

This logo replaced the “MoinMoin Man”
logo long ago.

After text.

	Notes:
	
	The Sphinx parser does not have an image named “png” so the alternate text
will be displayed.

	The Sphinx parser does not support figures so the caption and explanatory text
will not display correctly.

Blockquotes and Indentations

To create a blockquote, indent all lines of a paragraph or paragraphs with an
equal number of spaces. To add an attribution, begin the last indented paragraph
with “– “.

Markup:

Text introducing a blockquote:

 If you chase two rabbits, you will lose them both.

Result:

Text introducing a blockquote:

If you chase two rabbits, you will lose them both.

Markup:

This is an ordinary paragraph, introducing a block quote.

 "It is my business to know things. That is my trade."

 -- Sherlock Holmes

Result:

This is an ordinary paragraph, introducing a block quote.

“It is my business to know things. That is my trade.”

—Sherlock Holmes

Lists

Unordered Lists

Markup:

- item 1
- item 2

 - item 2.1
 - item 2.2

 - item 2.2.1
 - item 2.2.2

- item 3

Result:

	item 1

	item 2

	item 2.1

	item 2.2

	item 2.2.1

	item 2.2.2

	item 3

Ordered Lists

Markup:

1. item 1
#. item 2

 (A) item 2.1
 (#) item 2.2

 i) item 2.2.1
 #) item 2.2.2

#. item 3

Result:

	item 1

	item 2

	item 2.1

	item 2.2

	item 2.2.1

	item 2.2.2

	item 3

	Notes:
	
	Ordered lists can be automatically enumerated using the # character as
demonstrated above. Note that the first item of an ordered list
auto-enumerated in this fashion must use explicit numbering notation
(e.g. 1.) in order to select the enumeration sequence type
(e.g. Roman numerals, Arabic numerals, etc.), initial number
(for lists which do not start at “1”) and formatting type
(e.g. 1. or (1) or 1)). More information on
enumerated lists can be found in the reStructuredText documentation [https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html#enumerated-lists].

	One or more blank lines are required before and after reStructuredText lists.

	The Moin2 parser requires a blank line between items when changing indentation levels.

	Formatting types (A) and i) are rendered as A. and A. by Sphinx and as A. and i. by Moin2.

Definition Lists

Definition lists are formed by an unindented one line term followed by an indented definition.

Markup:

term 1
 Definition 1.

term 2 : classifier
 Definition 2.

term 3 : classifier one : classifier two
 Definition 3.

Result:

	term 1
	Definition 1.

	term 2classifier
	Definition 2.

	term 3classifier oneclassifier two
	Definition 3.

Field Lists

Field lists are part of an extension syntax for directives usually intended for further processing.

Markup:

:Date: 2001-08-16
:Version: 1
:Authors: Joe Doe

Result:

	Date:

	2001-08-16

	Version:

	1

	Authors:

	Joe Doe

Option lists

Option lists are intended to document Unix or DOS command line options.

Markup:

-a command definition
--a another command definition
/S dos command definition

Result:

	-a

	command definition

	--a

	another command definition

	/S

	dos command definition

Transitions

Transitions, or horizontal rules, separate other body elements. A transition should
not begin or end a section or document, nor should two transitions be immediately
adjacent. The syntax for a transition marker is a horizontal line of 4 or more
repeated punctuation characters. The syntax is the same as section title
underlines without title text. Transition markers require blank lines before and after.

Markup:

Text

Text

Result:

Text

Text

Backslash Escapes

Sometimes there is a need to use special characters as literal characters,
but reST’s syntax gets in the way. Use the backslash character as an escape.

Markup:

hot

333. is a float, 333 is an integer.

hot

333\. is a float, 333 is an integer.

Result:

hot

	is a float, 333 is an integer.

hot

333. is a float, 333 is an integer.

	Notes:
	
	The Moin2 reST parser changes the 333. to a 1. and inserts an error message into the document.

	The Sphinx reST parser begins an ordered list with 333. The visual effect is a dedented line.

Tables

Simple Tables

Easy markup for tables consisting of two rows. This syntax can have no more than two rows.

Markup:

======= ======= =======
 A B C
======= ======= =======
 1 2 3
======= ======= =======

Result:

	A

	B

	C

	1

	2

	3

Markup:

======= ======= =======
 foo Bar
--------------- -------
 A B C
======= ======= =======
 1 2 3
======= ======= =======

Result:

	foo

	Bar

	A

	B

	C

	1

	2

	3

Grid Tables

Complex tables can have any number of rows or columns. They are made by |, +, - and =.

Markup:

+----------------+---------------+
| A | |
+----------------+ D |
| B | |
+================+===============+
| C |
+--------------------------------+

Result:

	A

	D

	B

	C

One difference between the Sphinx and Moin reST parsers is demonstrated below.
With the Spinx parser, grid table column widths can be expanded by adding spaces.

Markup:

+---------------+--+
| minimal width | maximal width (will take the maximum screen space) |
+---------------+--+

Result:

	minimal width

	maximal width (will take the maximum screen space)

	Notes:
	
	The Moin2 reST parser does not add the <colgroup><col width=”9%”><col width=”91%”>
HTML markup added by the Sphinx parser (the width attribute generates an HTML
validation error), nor does it use Javascript to adjust the width of tables.

	Under Moin2, tables and table cells will be of minimal width
(unless there is CSS styling to set tables larger).

Admonitions

Admonitions are used to draw the reader’s attention to an important paragraph.
There are nine admonition types: attention, caution, danger, error, hint,
important, note, tip, and warning.

The reST parser uses “error” admonitions to highlight some reST syntax errors.

Markup:

.. caution:: Be careful!
.. danger:: Watch out!
.. note:: Phone home.

Result:

Caution

Be careful!

Danger

Watch out!

Note

Phone home.

Comments

Comments are not shown on the page. Some parsers may create HTML comments
(<!-- -->). The Sphinx parser suppresses comments in the HTML output.
Within the Moin2 wiki, comments may be made visible/invisible by clicking the
Comments link within item views.

Markup:

.. This is a comment
..
 _so: is this!
..
 [and] this!
..
 this:: too!
..
 |even| this:: !

Result:

Literal Blocks

Literal blocks are used to show text as-it-is. i.e no markup processing is done within a literal block.
A minimum (1) indentation is required for the text block to be recognized as a literal block.

Markup:

Paragraph with a space before two colons ::

 Literal block

Paragraph with no space before two colons::

 Literal block

Result:

Paragraph with a space between preceding two colons

Literal block

Paragraph with no space between text and two colons:

Literal block

Line Blocks

Line blocks are useful for address blocks, verse (poetry, song lyrics), and
unadorned lists, where the structure of lines is significant. Line blocks
are groups of lines beginning with vertical bar (“|”) prefixes. Each vertical
bar prefix indicates a new line, so line breaks are preserved. Initial
indents are also significant, resulting in a nested structure. Inline markup
is supported. Continuation lines are wrapped portions of long lines; they
begin with a space in place of the vertical bar. The left edge of a
continuation line must be indented, but need not be aligned with the left
edge of the text above it. A line block ends with a blank line.

Markup:

Take it away, Eric the Orchestra Leader!

 | A one, two, a one two three four
 |
 | Half a bee, philosophically,
 | must, *ipso facto*, half not be.
 | But half the bee has got to be,
 | *vis a vis* its entity. D'you see?
 |
 | But can a bee be said to be
 | or not to be an entire bee,
 | when half the bee is not a bee,
 | due to some ancient injury?
 |
 | Singing...

Result:

Take it away, Eric the Orchestra Leader!

A one, two, a one two three four

Half a bee, philosophically,

must, ipso facto, half not be.

But half the bee has got to be,

vis a vis its entity. D’you see?

But can a bee be said to be

or not to be an entire bee,

when half the bee is not a bee,

due to some ancient injury?

Singing…

Contents

	Docbook XML Markup

	Lists

	Itemized List

	Ordered List

	Simple text formatting

	Quotes

	Trademarks and Copyrights

	Preformatted Data

	Links

	Tables

	Images

	Footnotes

Docbook XML Markup

This page shows the different features of our native DocBook support. A table of contents is automatically
generated from section titles.

This content, describing the Docbook syntax, is written in reST. Instances where reST cannot
duplicate the same rendering produced by Docbook are flagged with reST NOTE.
The reST parser used by Moin and the parser used by Sphinx are different.

Lists

Itemized List

Markup::

<itemizedlist>
 <listitem>
 <para>Item 1
 </para>
 </listitem>
 <listitem>
 <para>Item 2
 </para>
 </listitem>
 <listitem>
 <para> Item 3
 </para>
 </listitem>
</itemizedlist>

Results:

	Item 1

	Item 2

	Item 3

Ordered List

Markup::

<orderedlist numeration="lowerroman">
 <listitem>
 <para>One</para>
 </listitem>
 <listitem>
 <para>Two</para>
 </listitem>
 <listitem>
 <para>Three</para>
 </listitem>
 <listitem>
 <para>Four</para>
 </listitem>
</orderedlist>

Results:

	One

	Two

	Three

	Four

reST NOTE: should show small roman numbers here

Simple text formatting

Markup::

<para>
<emphasis role="bold">This</emphasis> paragraph contains
<emphasis>some <emphasis>emphasized</emphasis> text</emphasis>
and a <superscript>super</superscript>script
and a <subscript>sub</subscript>script.
</para>

Results:
This paragraph contains
some *emphasized text*
and a superscript
and a subscript.

Quotes

Markup::

<para>This software is provided <quote>as is</quote>, without expressed
or implied warranty.
</para>

Results:
This software is provided “as is”, without expressed
or implied warranty.

Trademarks and Copyrights

Markup::

<para><trademark class='registered'>Nutshell Handbook</trademark> is a
registered trademark of O'Reilly Media, Inc.
</para><para>
<trademark class="copyright">2014 Joe Doe</trademark>
</para><para>
<trademark class="trade">Foo Bar</trademark> is an unregistered trademark.
</para><para>
<trademark class="service">Foo Bar</trademark> is an unregistered servicemark.
</para>

Results:
Nutshell Handbook® is a
registered trademark of O’Reilly Media, Inc.

© 2014 Joe Doe

Foo Bar™ is an unregistered trademark.

Foo BarSM is an unregistered servicemark.

Preformatted Data

Markup::

<screen><![CDATA[
<para>
My preformatted data.

Remove blanks from "]] >" below:
</para>
]] ></screen>

Results::

<para>
My preformatted data.

Remove blanks from "]] >" below:
</para>

Links

Markup::

<link xlink:href="https://moinmo.in/">MoinMoin rocks</link>

Results:

MoinMoin rocks [https://moinmo.in/]

Tables

Markup::

<table frame='all'><title>Sample Table</title>
<tgroup cols='5' align='left' colsep='1' rowsep='1'>
<colspec colname='c1'/>
<colspec colname='c2'/>
<colspec colname='c3'/>
<colspec colnum='5' colname='c5'/>
<thead>
<row>
 <entry namest="c1" nameend="c2" morecols='1' align="center">Horizontal Span</entry>
 <entry>a3</entry>
 <entry>a4</entry>
 <entry>a5</entry>
</row>
</thead>
<tfoot>
<row>
 <entry>f1</entry>
 <entry>f2</entry>
 <entry>f3</entry>
 <entry>f4</entry>
 <entry>f5</entry>
</row>
</tfoot>
<tbody>
<row>
 <entry>b1</entry>
 <entry>b2</entry>
 <entry>b3</entry>
 <entry>b4</entry>
 <entry morerows='1' valign='middle'><para> <!-- Pernicous Mixed Content -->
 Vertical Span</para></entry>
</row>
<row>
 <entry>c1</entry>
 <entry namest="c2" nameend="c3" morecols='1' align='center' morerows='1' valign='bottom'>Span Both</entry>
 <entry>c4</entry>
</row>
<row>
 <entry>d1</entry>
 <entry>d4</entry>
 <entry>d5</entry>
</row>
</tbody>
</tgroup>
</table>

Results:

	Horizontal Span

	a3

	a4

	a5

	b1

	b2

	b3

	b4

	Vertical Span

	c1

	Span Both

	c4

	d1

	d4

	d5

	f1

	f2

	f3

	f4

	f5

reST NOTE: the table does not show the correct result.

Images

An “inlinemediaobject” may be positioned within a paragraph and aligned to the text top, middle, or bottom
through use of the align attribute.

Markup::

<para>
Here is an image
<inlinemediaobject>
 <imageobject>
 <imagedata format="png" align="middle" fileref="png"/>
 </imageobject><caption>My Logo</caption>
</inlinemediaobject>
embedded in a sentence.
</para>

Results:

Here is an image

[image: My Logo]
embedded in a sentence.

	Notes:
	
	The Sphinx parser does not have an image named “png” so the alternate text
will be displayed.

	reST NOTE: There is no facility to embed an image within a paragraph.

Footnotes

All footnotes are placed at the bottom of the document in the order defined.

Markup::

<para>An annual percentage rate (<abbrev>APR</abbrev>) of 13.9%<footnote>
<para>The prime rate, as published in the Wall Street
Journal on the first business day of the month,
plus 7.0%.
</para>
</footnote>
will be charged on all balances carried forward.
</para>

Results:

An annual percentage rate (APR) of 13.9% [1] will be charged on all balances carried forward.

[1]
The prime rate, as published in the Wall Street
Journal on the first business day of the month,
plus 7.0%.

Mediawiki markup overview

Features currently not working with moin’s mediawiki parser are marked with MWTODO.

Features currently not working with moin’s rst parser are marked with reSTTODO.

Headings

Markup:

= Level 1 =
== Level 2 ==
=== Level 3 ===
==== Level 4 ====
===== Level 5 =====
====== Level 6 ======

Result:

Level 1

Intentionally not rendered as level 1 so it does not interfere with Sphinx’s indexing

Level 2

Level 3

Level 4

Level 5

Level 6

Text formatting

These markups can be used within text to apply character style.

	Markup

	Result

	'''Bold text'''

	Bold text

	''Italic text''

	Italic text

	'''''Bold and italic text'''''

	Bold and italic text

	<nowiki>no ''markup''</nowiki>

	no ''markup''

	<u>underline</u>

	underline

	
strikethrough

or

<s>striketrough</s>

	strikethrough

	
<code>Fixed width</code>

or

<tt>Fixed width</tt>

	Fixed width

	
<pre>Preformatted text

without '''markups'''</pre>

	
Preformatted text

without '''markups'''

reSTTODO
table headers are not formatted as headers
(see “Tables” section for corresponding MWTODO)

Hyperlinks

Internal links

reSTTODO
These link targets are not interpreted.
(The examples shown here result in empty links)

reSTTODO
Comments (lines starting with ..) are printed

	Markup

	Result

	Comment

	[[Item name]]

	Item name

	Link to an item

	[[Item name|alternative text]]

	alternative text

	Link with alternative text

	[[#anchor]]

	#anchor

	Link to an anchor on this item

	[[#anchor|alternative text]]

	alternative text

	Link to an anchor with alternative
text

	[[Item name#anchor]]

	Item name#anchor

	Link to an anchor on another item

	<div id="anchor">text</div>

	text

	Definition of an anchor MWTODO
(div tag is not interpreted)

	[[/subitem]]

	/subitem

	Link to a subitem

	[[media:image.jpg]]

	media:image.jpg

	Link to a file MWTODO
(irrelevant for moin?)

External links

	Markup

	Result

	Comment

	http://www.example.com

	http://www.example.com

	External link MWTODO
(not converted into a hyperlink)

	[http://www.example.com text]

	text [http://www.example.com]

	External link with alternative text

	[http://www.example.com]

	[1] [http://www.example.com]

	External link with number MWTODO
(no numbering, normal link)

	[mailto:test@example.com mail]

	mail

	Mailto link

Images

MWTODO
Use of [[File:...]] causes this error:
AttributeError: 'unicode' object has no attribute 'keyword'

Syntax

The syntax for inserting an image is as follows:

[[File:<filename>|<options>|<caption>]]

The options field can be empty or can contain one or more of
the following options separated by pipes (|).

	Format option:
	Controls how the image is formatted in the item.

one of border and/or frameless, frame or thumb

	Resizing option:
	Controls the display size of the picture.
The aspect ratio cannot be changed.

one of <width>px, x<height>px, <width>x<height>px or upright

	Horizontal alignment option:
	Controls the horizontal alignment of an image.

one of left, right, center or none

	Vertical alignment option:
	Controls the vertical alignment of a non-floating inline image.

one of baseline, sub, super, top, text-top, middle (default), bottom or text-bottom

	Link option:
	The option link=<target> allows to change the
target of the link represented by the picture.
The image will not be clickable if <target> is left empty.

Please note that the link option cannot be used with one of the options thumb or frame.

	Other options:
	The alt=<alternative text> option sets the alternative
text (HTML attribute alt=) of the image.

The option page=<number> sets the number of the page
of a .pdf or .djvu file to be rendered.

Examples

	Markup

	Description

	[[File:example.png]]

	Displays an image without
further options.

	[[File:example.png|border]]

	Displays the image with a
thin border.

	[[File:example.png|frame|text]]

	Displays the image in a
frame (not inline) and shows
text as caption.

	[[File:example.png|thumb|text]]

	Displays a thumbnail of the
image (not inline) and shows
text as caption.

	[[File:example.png|frameless]]

	Like thumb but inline
and without border and frame

Paragraphs

Markup:

You can leave an empty line to start a new paragraph.

Single breaks are ignored.
To force a line break, use the
 HTML tag.

Result:

You can leave an empty line to start a new paragraph.

Single breaks are ignored. To force a line break, use the

HTML tag.

Horizontal rules

Markup:

A horizontal rule can be added by typing four dashes.

This text will be displayed below the rule.

Result:

A horizontal rule can be added by typing four dashes.

This text will be displayed below the rule.

reSTTODO
Horizontal rule is not interpreted.

Preformatted text

Markup:

␣Each line that starts
␣with a space
␣is preformatted. It is ''possible''
␣to use inline '''markups'''.

Result:

Each line that starts

with a space

is preformatted. It is possible

to use inline markups.

MWTODO
Preformatted text is not interpreted.

reSTTODO
Line blocks (lines starting with |) are not interpreted.

Comments

Markup:

<!-- This is a comment -->
Comments are only visible in the modify window.

Result:

Comments are only visible in the modify window.

MWTODO
This is not interpreted (i.e. comments are printed).

MWTODO
A line starting with ## is treated as comment, although
it should be treated as part of an ordered list (see section “Ordered lists”).

MWTODO
It seems that /*…*/ is treated as comment,
whereas this is not intended in mediawiki syntax.

Symbol entities

A special character can be placed by using a symbol entity.
The following table shows some examples for symbol entities:

	Entity

	Character

	—

	—

	←

	←

	→

	→

	⇐

	⇐

	⇒

	⇒

	©

	©

It is also possible to use numeric entities like &#xnnnn;
where “nnnn” stands for a hexadecimal number.

Lists

Ordered lists

Ordered lists are formed of lines that start with number signs (#).
The count of number signs at the beginning of a line determines the level.

Markup:

First item
Second item
First item (second level)
Second item (second level)
First item (third level)
Third item

Result:

	First item

	Second item

	First item (second level)

	Second item (second level)

	First item (third level)

	Third item

Unordered lists

Markup:

* List item
* List item
** List item (second level)
*** List item (third level)
* List item

Result:

	List item

	List item

	List item (second level)

	List item (third level)

	List item

Definition lists

Markup:

;term
: definition
;object
: description 1
: description 2

Result:

	term
	definition

	object
	description 1

description 2

Mixed lists

It is possible to combine different types of lists.

Markup:

first item
second item
#* point one
#* point two
third item
#; term
#: definition
#: continuation of the definition
fourth item

Result:

	first item

	second item

	point one

	point two

	third item

	term
	definition

continuation of the definition

	fourth item

Indentations

Definition lists can also be used to indent text.

Markup:

: single indent
:: double indent
:::: multiple indent

Result:

	single indent
	
	double indent
	multiple indent

Footnotes

Footnotes can be used for annotations and citations rolled out of the
continuous text.

Markup:

This is a footnote <ref>This description will be placed at the item's bottom.</ref>

Result:

This is a footnote [1].

[1] This description will be placed at the item’s bottom.

Tables

Syntax

	Markup

	Description

	{|

	table start (required)

	|+

	table caption (optional) MWTODO
(not interpreted)

only between table start and first row

	|-

	table row (optional)

This is not necessary for the first row.

	|

	table data (required)

Start each line that contains table data with |
or separate data on the same line with ||

	!

	table header (optional) MWTODO
(not formatted as header)

Start each line that represents a table
header with !
or separate different headers on the same line
with !!.

	|}

	table end (required)

Basic tables

Note that the following tables do not have visible borders
as this has to be done with XHTML attributes.

MWTODO
Tables should be borderless by default, the border attribute is not interpreted.

Markup:

{|
|row 1, column 1
row 1, column 2
row 2, column 1
row 2, column 2
}

Result:

	row 1, column 1

	row 1, column 2

	row 2, column 1

	row 2, column 2

Markup:

{|
!header 1
!header 2
|-
|A
B
C
D
}

Alternative syntax:

{|
!header 1!!header 2
|-
|A||B
|-
|C||D
|}

Result:

	header 1

	header 2

	A

	B

	C

	D

It is possible to use other elements inside tables:

Markup:

{|
!header 1
!header 2
|-
|A line break
can be done with the XHTML tag.
|A pipe symbol has to be inserted like this: <nowiki>|</nowiki>
|-
|
* This
* is a bullet list
* in a table cell.
|[http://www.example.com Hyperlink]
|}

Result:

	header 1

	header 2

	
A line break

can be done with the XHTML tag.

	A pipe symbol has
to be inserted like this: |

	
	This

	is a bullet list

	in a table cell

	Hyperlink [http://www.example.com]

MWTODO
Lists cannot be used inside cells.

XHTML attributes

It is allowed to use XHTML attributes
(border, align, style, colspan, rowspan, …) inside tables.

Markup:

{|border="1"
|This table has a border width of 1.
|align="left" | This cell is left aligned.
|-
|colspan="2" | This cell has a colspan of 2.
|}

Result:

	This table has a border
width of 1.

	This cell is left aligned.

	This cell has a colspan of 2.

MWTODO
attributes border and align are not interpreted

reSTTODO
colspan is not interpreted

Markdown Markup

This page introduces you to the most important elements of the Markdown syntax.
For details on the Python implementation of Markdown see https://python-markdown.github.io/

In addition to being supported by moin2, the Markdown markup language is used by issue trackers
such as those found in Bitbucket and Github. So what you learn here can be used there also.

Features currently not working with moin’s Markdown parser are marked with MDTODO.

This page, describing the Markdown syntax, is written in reST. Instances where reST cannot
duplicate the same rendering produced by Markdown are flagged with reST NOTE.
The reST parser used by Moin and the parser used by Sphinx are different. As noted below there
are several instances where one works and the other fails.

Table of Contents

The table of contents is a supported extension that is distributed with Python Markdown.

Markup:

[TOC]

Result:

Contents

	Markdown Markup

	Table of Contents

	Headings

	Level 3

	Level 4

	Level 5

	Level 6

	Preformatted Code

	Simple text editing

	Linking

	Inline Links

	Wikilinks

	Reference Links

	Lists

	Horizontal Rules

	Backslash Escapes

	Nested Blockquotes

	Images

	Inline HTML

	Extensions

	Tables

	Syntax Highlighting of Preformatted Code

	Fenced Code

	Smart Strong

	Attribute Lists

	Definition Lists

	Footnotes

	Admonition

Headings

Level 1 and 2 headings may be created by underlining with = and - characters, respectively.

Having equal numbers of characters in the heading and the underline
looks best in raw text, but having fewer or more = or - characters also works.

Heading levels 3 through 6 must be defined by prefixing the heading with a variable number of # characters indicating the heading level. Heading levels 1 and 2 may be defined in the same manner. It is customary, but not required, to follow the # characters with a single space character. Another option is to append the appropriate number of # characters after the heading text.

Markup:

Level 1
=======

Level 1

Level 2

Level 2

Level 3

Level 4

Level 5

Level 6

Result:

Level 3

Level 4

Level 5

Level 6

NOTE: Levels 1 and 2 are not shown above to avoid adding
unwanted entries to the table of contents. See the top of this page
for an approximate view of a level 1 heading and next section heading
below for level 2.

Preformatted Code

To show a preformatted block of code, indent all the lines by 4 or more spaces.

Markup:

Begin preformatted code

 First line
 Second line
 Third line

End of preformatted code

Result:

Begin preformatted code

First line
Second line
 Third line

End of preformatted code

Simple text editing

Markup:

Paragraphs are separated
by a blank line.

To create a line break, end a line
with 2 spaces.

Use asterisk characters to create text attributes: *italic*, **bold**, ***bold italics***.
Or, do the same with underscores: _Italics_, __bold__, ___bold italics___.
Use backticks to create `monospace`.

Result:

Paragraphs are separated
by a blank line.

To create a line break, end a line

with 2 spaces.

Use asterisk characters to create text attributes: italic, bold, bold italics.
Or, do the same with underscores: Italics, bold, bold italics.
Use backticks to create monospace.

reST Note: The moin reST parser will indent the second paragraph above.

Linking

Markdown supports two style of links: inline and reference.

Inline Links

Inline links use the form:

[link text](url "optional title")

	Markup

	Result

	[home page](Home)

	home page [http:Home]

	[home item](Home “my home page”)

	home item [http:Home]

	[a sub item](Home/subitem)

	a sub item [http:Home/subitem]

	[toc1](markdown#table-of-contents)

	toc1 [http:markdown#table-of-contents]

	[toc2](#table-of-contents)

	toc2 [http:#table-of-contents]

	[moinmoin](https://moinmo.in “Go there”)

	moinmoin [https://moinmo.in]

	[![Image name](png)](Home “click me”)

	png image [http:Home]

reST NOTE: Links with title attributes and images as links are not supported in reST.
The internal links above are broken.

Wikilinks

Wikilinks use the form:

[[PageName]]

	Markup

	Result

	[[Page]]

	Page [http:Page]

	[[Page/Subpage]]

	Subpage [http:Page/Subpage]

This features uses the mdx_wikilink_plus [https://github.com/neurobin/mdx_wikilink_plus] extension.

Reference Links

Reference links have two parts. Somewhere in the document the link label
is defined using a unique id; this has no visible output. Then the
reference link uses a form with square brackets rather than parens:

[id]: url "optional title"

[link text] [id]

	Markup

	Result

	[apple]: https://www.apple.com/

	

	[MoinMoin]: https://moinmo.in/ “go!”

	

	[see apples][apple]

	see apples [https://www.apple.com]

	[go to MoinMoin][MoinMoin]

	go to MoinMoin [https://moinmo.in]

reST NOTE: Links with title attributes are not supported in reST.

Lists

Unordered lists may use *, +, or - characters as bullets. The character used as a bullet does not effect the display. The display would be the same if * characters were used everywhere.

Markup:

* apples
* oranges
* pears
 - carrot
 - beet
 + man
 + woman
 - turnip
* cherries

Result:

	apples

	oranges

	pears

	carrot

	beet

	man

	woman

	turnip

	cherries

reST NOTE: As shown above and below, the Sphinx rendering of ordered
and unordered lists shows excessive spacing between levels.

Ordered lists use numbers and are incremented in regular order. Neither
alpha characters nor roman numerals are supported. Although you may use
numbers other than 1 with no adverse effect (as shown below), it is a
best practice to always start a list with 1.

Markup:

1. apples
1. oranges
7. pears
 1. carrot
 1. beet
 1. man
 1. woman
 1. turnip
1. cherries

Result:

	apples

	oranges

	pears

	carrot

	beet

	man

	woman

	turnip

	cherries

Lists composed of long paragraphs are easier to read in raw text if the
lines are manually wrapped with optional hanging indents. If multiple
paragraphs are required, separate the paragraphs with blank lines and indent.

Markup:

* Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam hendrerit mi posuere lectus. Vestibulum enim wisi,
 viverra nec, fringilla in, laoreet vitae, risus.
* Donec sit amet nisl. Aliquam semper ipsum sit amet velit.
 Suspendisse id sem consectetuer libero luctus adipiscing.
* Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam hendrerit mi posuere lectus. Vestibulum enim wisi,
viverra nec, fringilla in, laoreet vitae, risus.
* Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam hendrerit mi posuere lectus. Vestibulum enim wisi,
viverra nec, fringilla in, laoreet vitae, risus.
* Donec sit amet nisl. Aliquam semper ipsum sit amet velit.
Suspendisse id sem consectetuer libero luctus adipiscing.

Result:

	Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam hendrerit mi posuere lectus. Vestibulum enim wisi,
viverra nec, fringilla in, laoreet vitae, risus.

	Donec sit amet nisl. Aliquam semper ipsum sit amet velit.
Suspendisse id sem consectetuer libero luctus adipiscing.

	Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam hendrerit mi posuere lectus. Vestibulum enim wisi,
viverra nec, fringilla in, laoreet vitae, risus.

	Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam hendrerit mi posuere lectus. Vestibulum enim wisi,
viverra nec, fringilla in, laoreet vitae, risus.

	Donec sit amet nisl. Aliquam semper ipsum sit amet velit.
Suspendisse id sem consectetuer libero luctus adipiscing.

Horizontal Rules

To create horizontal rules, use 3 or more -, *, or _ on a line.
Neither changing the character nor increasing the number of characters
will change the width of the rule.
Putting spaces between the characters also works.

Markup:

text

- - - - - -

more text

more text

Result:

text

more text

more text

Backslash Escapes

Sometimes there is a need to use special characters as literal characters, but Markdown’s syntax gets in the way. Use the backslash character as an escape.

Markup:

hot

333. is a float, 333 is an integer.

hot

333\. is a float, 333 is an integer.

Result:

hot

	is a float, 333 is an integer.

hot

333. is a float, 333 is an integer.

reST NOTE: The Moin reST parser flags the use of 333 as a bullet number.

Nested Blockquotes

Advanced blockquotes with nesting are created by starting a line with a > character.

Markup:

> A standard blockquote is indented
> > A nested blockquote is indented more
> > > You can nest to any depth.

Result:

	A standard blockquote is indented
	
	A nested blockquote is indented more
	You can nest to any depth.

Images

Images are similar to links with both an inline and a reference style,
but they start with an exclamation point. Within Markdown, there is no
syntax to change the default sizes or positions of transclusions:

Markup:

To transclude image from local wiki:
![Alt text 1](png "Optional title")

Reference-style, where "logo" is a name defined anywhere within this item:
![Alt text 2][logo]

Image references are defined using syntax identical to link references and
do not appear in the rendered HTML:
[logo]: png "Optional title attribute"

To transclude image from remote site:
![remote image](http://static.moinmo.in/logos/moinmoin.png)

Result:

To transclude image from local wiki:

[image: Alt text 1]
Reference-style, where “logo” is a name defined anywhere within this item:

[image: Alt text 2]
Image references are defined using syntax identical to link references and
do not appear in the rendered HTML:

To transclude image from remote site:

[image: remote image]
reST NOTE: The Moin reST parser renders all three images above. The
Sphinx parser renders only the external png image from
http://static.moinmo.in/logos/moinmoin.png. reST syntax does not allow the
rendering of inline images, nor the use of a title attribute. The logos
above are floated right, in Markdown the logos would appear as inline images.

Inline HTML

Note: Use of the style attribute within HTML tags is dependent
upon configuration settings. See configuration docs for information on
allow_style_attributes.

You may embed a small subset of HTML tags directly into your markdown documents.

<a> - hyperlink.
 - bold, use as last resort <h1>-<h3>, , and are preferred.
<blockquote> - specifies a section that is quoted from another source.
<code> - defines a piece of computer code.
 - delete, used to indicate modifications.
<dd> - describes the item in a <dl> description list.
<dl> - description list.
<dt> - title of an item in a <dl> description list.
 - emphasized.
<h1>, <h2>, <h3> - headings.
<i> - italic.
 - specifies an image tag.
<kbd> - shows keyboard input.
 - list item in an ordered list or an unordered list .
 - ordered list.
<p> - paragraph.
<pre> - pre-element displayed in a fixed width font and unchanged line breaks.
<s> - strikethrough.
<sup> - superscript text appears 1/2 character above the baseline used for footnotes and other formatting.
<sub> - subscript appears 1/2 character below the baseline.
 - defines important text.
<strike> - strikethrough is deprecated, use instead.
 - unordered list.

 - line break.
<hr> - defines a thematic change in the content, usually via a horizontal line.

Markup:

E = MC²

This word is bold.

This word is italic.

This word is bold.

This word is <strong style="color:red;background-color:yellow">bold;
colors depend upon configuration settings.

Result:

E = MC2

This word is bold.

This word is italic.

This word is bold.

This word is bold;
colors depend upon configuration settings.

 Templates and Meta Data

Templates and Meta Data

Two features that are related to the creation, editing and saving of an
item are templates and meta data.

Templates

Templates make it easier for users to create new items that
are similar to many other items.
Instead of starting from scratch or using a copy, paste, and modify technique;
templates that contain the common text and structure can be created. A
template item must have a tag of “template”.

When creating a new item, if there are available templates for
the selected content type and namespace, then an extra step added to the
create item dialog allows the editor to choose a template. If a template is selected, the
content of the template item will be loaded and copied to the
modify screen’s textarea.

To create a new template, just create an item and add a tag of “template”
before saving the item. Once created, each user creating a new item in the
target namespace and content type will be given the option of using any
of the available templates.

Templates may define data for the ACL, Summary, and Tags fields. These values
will be copied to the modify form within the item creation dialog; note the template
tag will not be copied. Users wanting to create a new template using an old
template will need to rekey the template tag.

For templates with MoinWiki markup, Predefined Variables can be used to insert
date, time, user name, item name, and others. See Predefined Variables
in the Moin Wiki markup overview.

The example below is a very simple template for the users namespace. Each user
is encouraged to create a home page using the 4-line moinwiki markup template.
@ITEM@ and @EMAIL@ are predefined variables and will be replaced with
the item name (the new item name is expected to be the user’s name) and the users
email address (copied from the current user’s settings) when the item is saved.
To create a home page, each user begins the creation of a new item in the users namespace,
selects the template, keys in a nickname and hobbies, and saves the item.:

= @ITEM@ =
Nickname:
Hobbies:
Email: @EMAIL@

Meta Data

When an item is edited (including non-text items like images, etc.),
most themes provide a means of updating certain meta data
associated with the item. The meta data fields that may be updated by
all editors include Summary, Tags, and Names.

Users with admin authority on the item may update the item’s ACLs.
The format of ACL rules is discussed within the configuration section under
authorization.

Most themes will display the Summary field above the item’s content. The
use of this field is optional. When used, it may contain a one-line
summary of the pages content, a TODO list of additional content that
should be added or verified, or other special instructions to future readers
and editors.

For fields that may have multiple entries like the Tags and Names fields,
use commas to separate the entries. Leading and trailing spaces are stripped,
embedded spaces will become part of the tag or name.

Tags provide an alternate means of indexing articles. While tags are frequently
used to group items based on the item’s subject matter, they can also
be used to group items in ways unrelated to the subject matter such as
marking items that need additional content, editing, review, etc. Most themes
provide a link to a Tags view within the navigation panel.

While most items will have a single name, item editors may add or delete
multiple names. Editors may find multiple names useful when renaming or
merging items. Item names cannot span multiple namespaces. Most themes
will show all item names within the Page Trail panel. Some reports, such as
History, will show all item names in a single row. Other reports which are
sorted by name, such as Index and Tags, will show each name in a separate
row.

 Searching and Finding

Searching and Finding

Entering search queries

To start a search, enter a query into the short query input field and type
enter or click the search icon. By default, the names, summary, tags, content, namengram,
summaryngram, and contentngram fields are searched.

The search results view provides a form for refining the search through
ajax updates. A transaction is started each time a character is added or removed
in the search field. If keying is rapid, it is possible that results will
processed out of order. The Whoosh query shows the last term processed.

Clicking the Search Options link displays alternatives for modifying the search.
Ajax updates will be made whenever a radio button or checkbox is changed.

Below the search form is the query processed by Whoosh, and Whoosh generated
suggestions for additional searches by input, item name, and item content.

Finally, the search hits are presented. These are ordered by
the whoosh scoring number. Each hit will contain the item name and some
meta data. If available, the item summary and partial item content with the
search term highlighted will be shown.

Simple search queries

Just enter one or more words into the query input field and hit Enter.

If your query consists of multiple words, it will only find documents containing ALL those
words. You can use AND, OR, NOT to refine your search. “AND” is the default.

Examples

Search for “wiki”:

wiki

Search for documents containing “wiki” AND “moin”:

wiki moin

Explicit alternative (does the same as above):

wiki AND moin

Search for documents containing “wiki” OR “moin”:

wiki OR moin

Search for documents containing “wiki” and NOT “bad”:

wiki NOT bad

Explicit alternative (does the same as above):

wiki AND NOT bad

Group terms using ():

wiki AND NOT (bad OR worse)

Redirect to best match

If you know the target item name, start the search term with a back-slash character.
Only the names and namengram fields will be searched. If there is a hit, the browser will be
redirected to the highest scoring hit.

Examples

Search for a specific item name and immediately redirect browser to best match:

\Home
\Home/subitem
\users/JoeDoe

Using wildcards

If you want to enter word fragments or if you are not sure about spelling or
word form, you can use wildcards for the parts you do not know:

	Wildcard

	Matches

	?

	one arbitrary character

	*

	any count of arbitrary characters

Examples

Search for something like wiki, wika, wikb, …:

wik?

Search for something like wiki, willi, wi, …:

w*i

You can also use it for poor man’s language independent word stemming.

Matches on clean, cleaner, cleanest, cleaning, …:

clean*

Using regular expressions

Regular expressions enable even more flexibility for specifying search terms.

See https://en.wikipedia.org/wiki/Regular_expression for basics about regexes.

See https://docs.python.org/3/library/re.html about python’s regex implementation,
which we use for MoinMoin.

You need to use this syntax when entering regexes: r”yourregex”

Examples

Search for hello or hallo:

r"h[ae]llo"

Search for words starting with foo:

r"^foo"
r"\Afoo"

Search for something like wiki, wika, wikb, …:

r"wik."

Search for something like wiki, willi, wi, …:

r"w.*i"

Searching in specific fields

If not specified otherwise, moin will search in names,
tags, summary, comment and content fields. Three fields with
n-gram support are also searched by default: namengram, summaryngram
and contentngram.

N-gram indexing is a powerful method for getting fast, “search as you type” functionality.
A tokinizer splits words within ngram content fields into strings of 3 to 6 characters.
These small strings may be matched against search terms that are tokinized into strings
of 3 to 6 characters.

To specify the field to search in, just use the fieldname:searchterm syntax.
If embedded spaces are desired then do: fieldname:”search term”. Separate
multiple terms with a space: content:foo tags:Foo is the same as
content:foo AND tags:Foo.

The following table includes fields that may be useful for searching.

	Field name

	Field value

	acl **

	access control list (see below)

	address

	submitter IP address, e.g. 127.0.0.1

	comment

	editor comment on save, rename, etc.

	content

	document contents, e.g. This is some example content.

	contentngram **

	document contents, tokenized by 3 to 6 characters.

	contenttype

	document type: text, image, audio, moinwiki, jpg, …

	itemlinks **

	link targets of the document, e.g. OtherItem

	itemtransclusions **

	transclusion targets of the document, e.g. OtherItem

	language

	(main) language of the document contents, e.g. en

	mtime

	document modification (submission) date, 2011-08-07

	namengram **

	document names, tokenized by 3 to 6 characters.

	names

	document names, e.g. Home, MyWikiPage

	namespace

	namespace:”” for default or namespace:users

	name_exact

	same as name, but is not tokenized

	name_old

	name_old:* for all renamed items

	summary

	summary text, if provided by author

	summaryngram **

	summary text, tokenized by 3 to 6 characters.

	tags

	tags of the document, e.g. important, hard, todo

	username

	submitter user name, e.g. JoeDoe

	wikiname

	wiki name, e.g. ITWiki, EngineeringWiki, SalesWiki

** These fields exist only in the current revisions index, see Notes below.

Examples

Search in metadata fields:

contenttype:text
contenttype:image/jpeg
tags:todo
mtime:2022-01-08 # use ISO 8601 dates, not time; `mtime:2022-01 works
address:127.0.0.1
username:JoeDoe

Search items with an item ACL that explicitly gives Joe read rights:

acl:Joe:+read

Limiting search to a specific wiki, for example in a wiki farm’s shared index:

wikiname:SomeWiki # requires correct caps

Notes

There are two indexes. The smaller index is used by default. It only indexes the
current revision of each item. The larger index is used when the All radio
button under the Search Options link is selected. The larger indexes all
revisions of all items including revisions of deleted items. As noted in the table
above the larger index omits several fields to save space.

By default, all namespaces and all wikinames are searched, including the userprofiles
index. Because the userprofiles index is normally read restricted, hits will be
blocked and included as n items are not shown because read permission was denied at
the bottom of the page.

Items with transcluded content do not contain the transcluded content within the
item’s index. An item containing “foo” within its content and trancluding an item with
“bar” within its content cannot be matched by searching for “foo AND bar”. Both items
will be matched by searching for “foo OR bar”.

Moin only uses an indexed search. Keep in mind that this has some special properties:

	By using an index, the search is fast

	Because it is only using an index, it can only find what was put there

	If you use wildcards or regexes, it will still use the index, but in a different, slower way

For example:

	create an item with “FooBar” in the name, content, summary, tag, and comment fields

	search for “ooba” - the namengram, summaryngram, and contentngram will match

	search for “FooBar”: names, namengram, tags, summary, summaryngram, content,
contentngram, and comment will match

	search for “foobar”: names, namengram, summary, summaryngram, content, contentngram,
and comment will match

More information

See the Whoosh query language docs [https://whoosh.readthedocs.io/en/latest/querylang.html].

 File Upload

File Upload

File upload functionality is accessed through the +modify item view or the
Index view.

To upload a file on the +modify item view, click the browsers Browse/Choose
button. Use the browser’s file dialog to select an item, then click the OK button.
The file will be uploaded and saved with the previously chosen content type;
file name suffixes are ignored.

To upload a file or files on the global index navigation view,
start by clicking the New Item link to bring the Create new item dialog
into view.

From the Index view, there are two methods of uploading files, single file or multiple files.
Uploaded files will be logically placed within the current index, sub-index or namespace.
Multiple file uploads have several restrictions:

	the files will be uploaded and saved using the current name

	existing items with the same name will be overwritten

	the file names should have a valid suffix that defines the file type

	files without a known suffix will be stored as is and available for download

Single File Upload

Enter the new item name into the input area
and click the Create button. Select the content type to proceed to the +modify view.
Use the browsers file dialog to select an item, then click the OK button.
The file will be uploaded and saved with the chosen content type;
file name suffixes are ignored.

Multiple File Upload

Click the browsers Browse/Choose button and select one or more files from the browser’s
file dialog or use the drag & drop method to copy files.

The file uploads will start immediately. Upload status will be displayed by
overall and individual progress bars. The names of the files successfully uploaded will be
prepended to list of files in the index.

 Namespaces

Namespaces

MoinMoin supports the use of multiple namespaces where each namespace may have a
unique backend or media type. For example, the default namespace could use the OS filesystem
for item storage and another namespace could use an SQL database.

	an item in one namespace can readily include or transclude content from an item residing
in another namespace.

	it is not possible for an item to have an alias name referencing a different
namespace.

	it is not possible to rename an item into a different namespace.

	it is not possible to use a namespace name as an item name in a different namespace.

See the namespace section within MoinMoin configuration for information on how to configure
namespaces.

URL layout

http://server/[NAMESPACE/][[@FIELD/]VALUE][/+VIEW]

Above defines the URL layout, where uppercase letters are variable parts defined below and [] denotes optional.
It basically means search for the item field FIELD value VALUE in the namespace NAMESPACE and apply the
view VIEW on it.

	NAMESPACE
	Defines the namespace for looking up the item. NAMESPACE value all is the “namespace doesn’t matter” identifier.
It is used to access global views like global history, global tags etc.

	FIELD
	Whoosh schema field where to lookup the VALUE (default: name_exact, lookup by name).
FIELD can be a unique identifier like (itemid, revid, name_exact) or can be non-unique like (tags).

	VALUE
	Value to search in the FIELD (default: the default root within that namespace). If the FIELD is non-unique,
we show a list of items that have FIELD:VALUE.

	VIEW
	used to select the intended view method (default: show).

	Examples:
	The following examples show how a url can look like, ns1, ns1/ns2 are namespaces.

	http://localhost:8080/Home

	http://localhost:8080/ns1/@tags/sometag

	http://localhost:8080/ns1/ns2

	http://localhost:8080/ns1/SomePage

	http://localhost:8080/+modify/ns1/ns2/SomePage

	http://localhost:8080/+delete/ns1/@itemid/37b73d2a6c154bb4ab993d0fb463219c

	http://localhost:8080/ns1/@itemid/37b73d2a6c154bb4ab993d0fb463219c

 User Subscriptions

User Subscriptions

Users can subscribe to moin items in order to receive notifications about item
changes. Item changes include:

	creation of a new item

	modification of an existing item

	renaming of an item

	reverting an item’s revision

	copying of an item

	deletion of an item

	destruction of a revision

	destruction of all item’s revisions

Make sure that Moin is able to send E-Mails, see Mail configuration.

Types of subscriptions

There are 5 types of subscriptions:

	by itemid (itemid:<itemid value>)

This is the most common subscription to a single item. The user will be notified
even after the item is renamed, because itemid doesn’t change. If you click on
Subscribe on item’s page, then you will be subscribed using this type.

	by item name (name:<namespace>:<name value>),

The user will be notified, if the name matches any of the item names and also
its namespace. Keep in mind that an item can be renamed and notifications for
this item would stop working if the new name doesn’t match any more.

	by tag name (tags:<namespace>:<tag value>)

The user will be notified, if the tag name matches any of the item tags and
its namespace.

	by a prefix name (nameprefix:<namespace>:<name prefix>)

Used for subscription to a set of items. The user will be notified, if at least
one of the item names starts with the given prefix and matches item’s namespace.
For example if you want to receive notifications about all the items from the
default namespace whose name starts with foo, you can use nameprefix::foo.

	by a regular expression (namere:<namespace>:<name regexp>)

Used for subscription to a set of items. The user will be notified, if the
regexp matches any of the item names and also its namespace. For example,
if you want to receive notifications about all the items on wiki from the default
namespace, then you can use namere::.*

Editing subscriptions

The itemid subscription is the most common one and will be used if you click on
Subscribe on item’s page. Respectively the Unsubscribe will remove the itemid
subscription.

If you were subscribed to an item by some other way rather than itemid subscription,
then on Unsubscribe you will be told that it is impossible to remove the subscription
and you need to edit it manually in the User Settings.

All the subscriptions can be added/edited/removed in the User Settings,
Subscriptions tab. Each subscription is listed on a single line and is
case-sensitive. Empty lines are ignored.

For itemid subscriptions, we additionally show the current first item name in
parentheses (this is purely for your information, the name is not stored or used
in any way).

 Requirements

Requirements

MoinMoin requires Python 3.9+. A CPython distribution is
recommended because it will likely be the fastest and most stable.
Most developers use a CPython distribution for testing.
Typical linux distributions will either have Python 3.9+ installed by
default or will have a package manager that will install Python 3.9+
as a secondary Python.
Windows users may download CPython distributions from https://www.python.org/ or
https://www.activestate.com/.

An alternative implementation of Python, PyPy, is available
from https://www.pypy.org/.

Servers

For moin2, you can use any server compatible with WSGI:

	the builtin server (used by the “moin run” command) is recommended for
desktop wikis, testing, debugging, development, adhoc-wikis, etc.

	apache with mod_wsgi is recommended for bigger/busier wikis.

	other WSGI-compatible servers or middlewares are usable

	For cgi, fastcgi, scgi, ajp, etc., you can use the “flup” middleware:
https://www.saddi.com/software/flup/

	IIS with ISAPI-WSGI gateway is also compatible: https://code.google.com/archive/p/isapi-wsgi

Caution

When using the built-in server for public wikis (not recommended), use
“moin run –no-debugger –no-reload” to turn off the werkzeug debugger and auto reloader.
See the Werkzeug docs for more information.

Dependencies

Dependent packages will be automatically downloaded and installed during the
moin2 installation process. For a list of dependencies, see pyproject.toml.

Clients

On the client side, you need a web browser that supports W3C standards HTML 5, CSS 2.1, and JavaScript:

	any current version of Firefox, Chrome, Opera, Safari, Maxthon, Internet Explorer (IE9 or newer).

	use of older Internet Explorer versions is not recommended and not supported.

 Installation

Installation

Installing the code

There are a lot of ways to do this and as this is not moin specific,
we won’t go into details:

	Use your operating system’s / distribution’s package manager to install the
moin2 package. This is the recommended method as it will install moin2 and
all other software it requires. Also your OS / dist might have a mechanism
for updating the installed software with security fixes or to future releases.

E.g. on Debian/Ubuntu Linux

apt install moin2

	Install from PyPI:

pip install moin2

	Install from Test Python Package Index as long as moin2 is not officially released:

pip install --pre --index-url https://test.pypi.org/simple --extra-index-url https://pypi.org/simple moin

	Optionally, create a virtual env first for better separation or

	use pip install --user moin2 to install into your home directory.

	pip will automatically install other python packages moin2 requires,
but you maybe have to install required non-python packages yourself.

	You will have to care for updates / installing security fixes yourself.

After this, you should have a moin command available, try it:

moin --help

Creating a wiki instance

You’ll need one instance directory per wiki site you want to run using moin -
this is where wiki data, indexes and configuration for that site are stored.

Let’s create a new instance:

moin create-instance --path INSTANCE-DIRECTORY

Change into the new instance directory:

cd INSTANCE-DIRECTORY

You’ll find a wikiconfig.py there to edit. Adapt it as you like,
you’ll find some comments in there. Review and change the settings for:

* sitename
* interwikiname
* acls
* SECRET_KEY

After configuring, you can create an empty wiki by initializing the
storage and the index:

moin index-create

If you don’t want to start with an empty wiki, you can load the welcome
page ‘Home’ and the English help for editors:

moin welcome
moin load-help -n help-en
moin load-help -n help-common

Or, if you have a moin 1.9.x wiki, convert it to moin 2:

moin import19 -d <path to 1.9 wiki/data>

Run your wiki instance

Now try your new wiki using the builtin python-based web server:

moin run # visit the URL it shows in the log output

For production, please use a real web server like apache or nginx.

For more information on various wiki admin activities, see Moin Command Line Interface.

Installation (for developers)

Clone the git repository

If you like to work on the moin2 code, clone the master project repository
or see the option below:

cd <to the parent of your moin repo>
git clone https://github.com/moinwiki/moin
cd moin

If you use github, you can also first fork the project repo to your own
user’s github repositories and then clone your forked repo to your local
development machine. You can easily publish your own changes and
do pull requests that way. If you do fork the project, then an alternative
to the above command is to clone your fork and add a remote url to the
master:

git clone https://github.com/<your name>/moin
cd moin
git remote add moinwiki https://github.com/moinwiki/moin

Installing

Before you can run moin, you need to install it.

Using your standard user account, run the following command
from the project root directory. Replace <python> in the command
below with the path to a python 3.9+ executable. This is usually
just “python”, but may be “python3”, “python3.9”, “/opt/pypy/bin/pypy”
or even <some-other-path-to-python>:

<python> quickinstall.py

OR

<python> quickinstall.py <path-to-venv>

The above will download all dependent packages to the PIP cache,
install the packages in a virtual environment, and compile the translations
(*.po files) to binary *.mo files. This process may take several minutes.

The default virtual environment directory name is:

../<PROJECT>-venv-<PYTHON>/

where <PROJECT> is the name of the project root directory, and <PYTHON>
is the name of your python interpreter. As noted above, the default
name may be overridden.

Check the output of quickinstall.py to determine whether there were
fatal errors. The output messages will normally state that stdout
and stderr messages were written to a file, a few key success/failure
messages will be extracted and written to the terminal window, and
finally a message to type “m” to display a menu.

If there are failure messages, see the troubleshooting section below.

Activate the virtual environment:

activate # in Windows
. activate # in Unix or Linux

Typing “./m” (or “m” on Windows) will display a menu similar to:

Usage: "./m <target>" where <target> is:

quickinstall update virtual environment with required packages
extras install packages required for docs and moin development
docs create moin html documentation (requires extras)
interwiki refresh contrib/interwiki/intermap.txt (version control)
log <target> view detailed log generated by <target>, omit to see list

new-wiki create empty wiki
restore * create wiki and restore wiki/backup.moin *option, specify file

backup * roll 3 prior backups and create new backup *option, specify file
dump-html * create a static HTML image of wiki *options, see docs

css run lessc to update basic theme CSS files
tests * run tests, log output (-v -k my_test)
coding-std correct scripts that taint the repository with trailing spaces..

del-all same as running the 4 del-* commands below
del-orig delete all files matching *.orig
del-pyc delete all files matching *.pyc
del-rej delete all files matching *.rej
del-wiki create a backup, then delete all wiki data

Please refer to 'moin help' to learn more about the CLI for wiki administrators.

While most of the above menu choices may be executed now, new users should
do the following to create a wiki instance and load it with the English help
for editors and some welcome pages (Home):

moin create-instance --full

Next, run the built-in wiki server:

moin run

As the server starts, a few log messages will be output to the
terminal window. Point your browser to http://127.0.0.1:5000, the
welcome page will appear and more log messages will be output
to the terminal window. Do a quick test by accessing some of the
help items and do a modify and save. If all goes well, your installation
is complete. The built-in wiki server may be stopped by typing ctrl-C
in the terminal window.

Next Steps

If you plan on contributing to the moin2 project, there are more
instructions waiting for you under the Development topic.

If you plan on using this wiki as a production wiki,
then before you begin adding or importing data and registering users
review the configuration options. See the sections on configuration for
details. Be sure to edit wikiconfig.py and change the settings for:

* sitename
* interwikiname
* acls
* SECRET_KEY

If you plan on just using moin2 as a desktop wiki (and maybe
help by reporting bugs), then some logical menu choices are:

./m extras # install packages required for docs and moin development
./m docs # create docs, see User tab, Documentation (local)
./m del-wiki # remove the wiki data from previous tests
./m new-wiki # create empty wiki or
./m backup # backup wiki data as needed or as scheduled

If you installed moin2 by cloning the repository,
then you will likely want to keep your master branch up-to-date:

git checkout master
git pull # if you cloned the moinwiki master repo OR
git pull moinwiki master # if you cloned your fork and added a remote

Also check to see if there are changes to /src/moin/config/wikiconfig.py
by comparing a diff to the wikiconfig.py in the wiki root.

After pulling updates and updating wikiconfig.py, rerun the quickinstall
process to install any new releases of dependent packages:

m quickinstall # in Windows
./m quickinstall # in Unix or Linux

Troubleshooting

Bad Network Connection

If you have a poor or limited network connection, you may run into
trouble with the commands issued by the quickinstall.py script.
You may see tracebacks from pip, timeout errors, etc. within the output
of the quickinstall script.

If this is the case, you may try rerunning the “python quickinstall.py”
script multiple times. With each subsequent run, packages that are
all ready cached (view the contents of pip-download-cache) will not
be downloaded again. Hopefully, any temporary download errors will
cease with multiple tries.

Other Issues

If you encounter some other issue not described above, try
researching the unresolved issues in our issue tracker.

If you find a similar issue, please add a note saying you also have the problem
and add any new information that may assist in the problem resolution.

If you cannot find a similar issue please create a new issue.
Or, if you are not sure what to do, join us on IRC at #moin-dev
and describe the problem you have encountered.

 Server Options

Server Options

Built-in Web Server (easy)

Moin comes with a simple built-in web server powered by Werkzeug, which
is suitable for development, debugging, and personal and small group wikis.

It is not made for serving bigger loads, but it is easy to use.

Please note that by default the built-in server uses port 5000. As this is
above port 1024, root (Administrator) privileges are not required and we strongly
recommend that you use a normal, unprivileged user account instead. If you
are running a desktop wiki or doing moin development, then use your normal
login user.

Running the built-in server

Run the moin built-in server as follows:

easiest for debugging (single-process, single-threaded server):
moin run

or, if you need another configuration file, ip address, or port:
MOINCFG='/path/to/wikiconfig.py'
moin run --host 1.2.3.4 --port 7777

While the moin server is starting up, you will see some log output, for example:

INFO werkzeug WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
 * Running on http://127.0.0.1:5000
INFO werkzeug Press CTRL+C to quit

Now point your browser at that URL - your moin wiki is running!

Stopping the built-in server

To stop the wiki server, either use Ctrl-C or close the window.

Debugging with the built-in server

Werkzeug has a debugger that may be used to analyze tracebacks. As of version 0.11.0,
a pin number is written to the log when the server is started:

INFO werkzeug:87 * Debugger pin code: 123-456-789

The pin code must be entered once per debugging session. If you will never use the
built-in server for public access, you may disable the pin check by adding:

WERKZEUG_DEBUG_PIN=off

to your OS’s environment variables. See Werkzeug docs for more information.

Using the built-in server for production

Caution

Using the built-in server for public wikis is not recommended. Should you
wish to do so, turn off the werkzeug debugger and auto reloader by passing the –no-debugger
and –no-reload flags. The wikiconfig.py settings of DEBUG = False and TESTING = False are
ignored by the built-in server.
See Werkzeug docs for more information:

moin run --host 0.0.0.0 --port 80 --no-debugger --no-reload

External Web Server (advanced)

We won’t go into details about using moin under an external web server, because every web server software is
different and has its own documentation, so please read the documentation that comes with it. Also, in general,
server administration requires advanced experience with the operating system,
permissions management, dealing with security, the server software, etc.

In order to use MoinMoin with another web server, ensure that your web server can talk to the moin WSGI
application, which you can get using this code:

from moin.app import create_app
application = create_app('/path/to/config/wikiconfig.py')

MoinMoin is a Flask application, which is a micro framework for WSGI applications,
so we recommend you read Flask’s good deployment documentation.

Make sure you use create_app() as shown above to create the application,
because you can’t import the application from MoinMoin.

Continue reading here: https://flask.palletsprojects.com/deploying/

In case you run into trouble with deployment of the moin WSGI application,
you can try a simpler WSGI app first. See docs/examples/deployment/test.wsgi.

As long as you can’t make test.wsgi work, the problem is not with
moin, but rather with your web server and WSGI app deployment method.

When the test app starts doing something other than Server Error 500, please
proceed with the MoinMoin app and its configuration.
Otherwise, read your web server error log files to troubleshoot the issue from there.

Tip

Check contents of /contrib/wsgi/ for sample wsgi files for your server.

Create and Serve a Static Wiki Image

“dump-html” is a utility used to create static html dumps of MoinMoin wiki content.
You may find it useful to create a static dump for a software release,
a high volume read-only copy for a busy web site, or a
thumb drive version to carry on trips when you do not have internet access.

To execute dump-html, use the command line interface.
The following three commands are equivalent as the
specified options are the defaults.

moin dump-html
moin dump-html --directory HTML --theme topside_cms --exclude-ns userprofiles --query .*
moin dump-html -d HTML -t topside_cms -e userprofiles -q .*

The –directory option may be a relative or absolute path. The default directory,
HTML, will be placed under the wiki root.

The –theme option specifies the theme. See “Customize the CMS Theme” within
the “Introduction into MoinMoin Configuration” section for alternatives.

The –exclude-ns option specifies a comma separated list of namespaces that
will be excluded from the dump. The “userprofiles” namespace should always
be excluded. To exclude user home pages from the static dump, use
userprofiles,users with no embedded spaces.

The –query option may be a single page name or a regex selecting the items
to be included in the dump. The default of “.*” selects all items.

Once created, the HTML directory may be moved anywhere as all the internal links are
relative. The pages may be served using your favorite web server or directly from
the file system.

Warning

Some browsers (Chrome, IE11, Opera) serve files loaded from the OS
file system as plain text. https://github.com/moinwiki/moin/issues/641

 Introduction into MoinMoin Configuration

Introduction into MoinMoin Configuration

Kinds of configuration files

To change how moinmoin behaves and looks, you may customize it by editing
its configuration files:

	Wiki Engine Configuration

	the file is often called wikiconfig.py, but it can have any name

	in that file, there is a Config class; this is the wiki engine’s configuration

	it is written in Python

	Framework Configuration

	this is also located in the same file as the Wiki Engine Configuration

	there are some UPPERCASE settings at the bottom; this is the framework’s
config (for Flask and Flask extensions)

	it is written in Python

	Logging Configuration

	optional; if you don’t configure this, it will use the builtin defaults

	this is a separate file, often called logging.conf

	it has an .ini-like file format

Do small steps and have backups

Start from one of the sample configs provided with moin
and only perform small changes, then try it before testing the next change.

If you’re not used to the config file format, backup your last working config
so you can revert to it in case you make some hard to find typo or other error.

Editing Python files

When editing Python files, be careful with indentation, only use multiples of
4 spaces to indent, and no tabs!

Also, be careful with syntax in general, it must be valid Python code or else
it will crash with some error when trying to load the config. If that happens,
read the error message, it will usually tell the line number and what the problem
is. If you can’t fix it easily, then revert to your backup of your last working
config.

Why use Python for configuration?

At first, you might wonder why we use Python code for configuration. One of the
reasons is that it is a powerful language. MoinMoin itself is developed in Python
and using something else would usually mean much more work when developing new
functionality.

Directory Structure

Shown below are parts of the directory structure after cloning moin and running quickinstall.py.
The default uses the OS file system for storage of wiki data and indexes.
The directories and files shown are referenced in this section of documentation related to configuration:

moin/ # clone root, default name
 contrib/ # scripts and docs of interest to developers
 docs/ # moin documentation in restructured text (.rst) format
 _build/
 html/ # local copy of moin documentation, created by running "./m docs" command
 requirements.d/ # package requirements used by quickinstall.py
 scripts/ # misc. scripts of interest to developers
 src/
 moin/ # large directory containing moin application code
 wiki/ # the wiki instance; created by running "./m new-wiki" or "moin create-instance" commands
 data/ # wiki data and metadata
 index/ # wiki indexes
 wiki_local/ # a convenient location to store custom CSS, Javascript, templates, logos, etc.
 wikiconfig.py # main configuration file, modify this to add or change features
 intermap.txt # interwiki map: copied by quickinstall.py, updated by "./m interwiki"

After installing moin from pypi or unpacking using a package manager, the directory structure will
look like this:

myvenv/ # virtualenv root
 bin/ # Windows calls this directory Scripts
 include # Windows calls this directory Include
 lib/ # Windows calls this directory Lib, includes moin package

After activating the above venv, moin create-instance -p <mywiki> creates the structure below. Multiple
instances of mywiki can be created with different names. mywiki may be created as a
subdirectory of myvenv or elsewhere. The preview and sql subdirectories are created when a
user edits a wiki item. To run moin using the built-in server, cd to the <mywiki> directory
and execute moin run.:

mywiki/ # wikiconfig dir, use this as CWD for moin commands
 wiki/ # the wiki instance; created by `moin create-instance`
 data/ # wiki data and metadata
 index/ # wiki indexes
 preview/ # text item backups are created when user clicks edit Preview button
 sql/ # sqlite database used for edit locking
 wiki-local/ # store custom CSS, Javascript, templates, logos, etc. here
 wikiconfig.py # main configuration file, modify this to add or change features
 intermap.txt # list of external wikis used in wikilinks: [[MeatBall:InterWiki]]

wikiconfig.py Layout

A wikiconfig.py looks like this:

-*- coding: utf-8 -*-
from moin.config.default import DefaultConfig

class Config(DefaultConfig):
 # some comment
 sometext = 'your value'
 somelist = [1, 2, 3]

MOINCFG = Config # Flask only likes uppercase characters
SOMETHING_FLASKY = 'foobar'

Let’s go through this line-by-line:

	this declares the encoding of the config file; make sure your editor uses
the same encoding (character set), especially if you intend to use non-ASCII
characters.

	this gets the DefaultConfig class from the moin code; it has default
values for all settings and this will save you work, because you only have to define
the parts that should be different from the defaults.

	empty line, for better readability

	define a new class Config that inherits most content from
DefaultConfig; this is the wiki engine configuration and if you define some
setting within this class, it will overwrite the setting from DefaultConfig.

	a # character defines a comment in your config. This line, as
well as all other following lines with Config settings, is indented by 4
blanks, because Python defines blocks by indentation.

	define a Config attribute called sometext with value ‘your value’.

	define a Config attribute called somelist with value [1, 2, 3]; this is
a list with the numbers 1, 2 and 3 as its elements.

	empty line, for better readability

	the special line “MOINCFG = Config” must stay there in exactly this form for
technical reasons.

	UPPERCASE code at the bottom, outside the Config class is a framework
configuration; usually something for Flask or some Flask extension.

A real-life example of a wikiconfig.py can be found in the
src/moin/config directory. This file will be initially copied to your
wiki path when you create a new wiki and wikiconfig.py is missing.

Wiki Engine Configuration

User Interface Customization

Customizing a wiki usually requires adding a few files that contain custom templates,
logo image, CSS, etc. To accomplish this, a directory named “wiki_local”
is provided. One advantage of using this directory and following the examples below
is that MoinMoin will serve the files.

If desired, the name of this directory may be changed or a separate subdirectory
for template files may be created by editing
the wikiconfig file and changing the line that defines template_dirs:

template_dirs = [os.path.join(wikiconfig_dir, 'wiki_local'),]

Using a custom snippets.html template

The user interface or html elements that often need customization are
defined as macros in the template file snippets.html.

If you would like to customize some parts, you have to copy the built-in
src/moin/templates/snippets.html file and save it in the wiki_local directory so moin
can use your copy instead of the built-in one.

To customize something, you usually have to insert your code between the
{% macro … %} and {% endmacro %} lines, see below for more details.

Logo

To replace the default MoinMoin logo with your own logo, copy your logo to
wiki_local and change the logo macro to something like:

{% macro logo() -%}

{%- endmacro %}

This is recommended to allow your users to immediately recognize which wiki site they are currently on.

You can use text or even nothing at all for the logo, it is not
required to be an image:

{% macro logo() -%}
 My Wiki
{%- endmacro %}

Make sure the dimensions of your logo image or text fit into the layout of
the theme(s) your wiki users are using.

Displaying license information

If you need to display something like license information for your content or
some other legalese, use this macro:

{# License information in the footer #}
{% macro license_info() -%}
All wiki content is licensed under the WTFPL.
{%- endmacro %}

Inserting pieces of HTML

At some specific places, you can add a piece of your own html into the
head or body of the theme’s html output:

{# Additional HTML tags inside <head> #}
{% macro head() -%}
{%- endmacro %}

{# Additional HTML before #moin-header #}
{% macro before_header() -%}
{%- endmacro %}

{# Additional HTML after #moin-header #}
{% macro after_header() -%}
{%- endmacro %}

{# Additional HTML before #moin-footer #}
{% macro before_footer() -%}
{%- endmacro %}

{# Additional HTML after #moin-footer #}
{% macro after_footer() -%}
{%- endmacro %}

Credits and Credit Logos

At the bottom of your wiki pages, usually some text and image links are shown
pointing out that the wiki runs MoinMoin, uses Python, that MoinMoin is GPL licensed, etc.

If you run a public site using MoinMoin, we would appreciate if you
keep those links, especially the “MoinMoin powered” one.

However, if you can’t do that for some reason, feel free to modify these
macros to show something else:

{# Image links in the footer #}
{% macro creditlogos(start='<ul id="moin-creditlogos">'|safe, end=''|safe, sep=''|safe) %}
{{ start }}
{{ creditlogo('https://moinmo.in/', url_for('.static', filename='logos/moinmoin_powered.png'),
 'MoinMoin powered', 'This site uses the MoinMoin Wiki software.') }}
{{ sep }}
{{ creditlogo('https://moinmo.in/Python', url_for('.static', filename='logos/python_powered.png'),
 'Python powered', 'MoinMoin is written in Python.') }}
{{ end }}
{% endmacro %}

{# Text links in the footer #}
{% macro credits(start='<p id="moin-credits">'|safe, end='</p>'|safe, sep='•'|safe) %}
{{ start }}
{{ credit('https://moinmo.in/', 'MoinMoin Powered', 'This site uses the MoinMoin Wiki software.') }}
{{ sep }}
{{ credit('https://moinmo.in/Python', 'Python Powered', 'MoinMoin is written in Python.') }}
{{ sep }}
{{ credit('https://moinmo.in/GPL', 'GPL licensed', 'MoinMoin is GPL licensed.') }}
{{ sep }}
{{ credit('https://validator.w3.org/check?uri=referer', 'Valid HTML 5', 'Click here to validate this page.') }}
{{ end }}
{% endmacro %}

Adding scripts

You can add scripts like this:

{# Additional Javascript #}
{% macro scripts() -%}
<script type="text/javascript" src="{{ url_for('serve.files', name='wiki_local', filename='MyScript.js') }}"></script>
{% endmacro %}

Adding CSS

To apply some style changes, add some custom css and overwrite any style you
don’t like in the base theme:

{# Additional Stylesheets (after theme css, before user css #}
{% macro stylesheets() -%}
 <link media="screen" href="{{ url_for('serve.files', name='wiki_local', filename='company.css') }}" title="Company CSS" rel="stylesheet" />
 <link media="screen" href="{{ url_for('serve.files', name='wiki_local', filename='red.css') }}" title="Red Style" rel="alternate stylesheet" />
 <link media="screen" href="{{ url_for('serve.files', name='wiki_local', filename='green.css') }}" title="Green Style" rel="alternate stylesheet" />
{%- endmacro %}

You can either add some normal css stylesheet or add a choice of alternate
stylesheets.

See:

	CSS media types [https://www.w3.org/TR/CSS2/media.html]

	Alternate Stylesheets [https://alistapart.com/article/alternate/]

A good way to test a stylesheet is to first use it as user CSS before
configuring it for the public.

Please note that stylesheets will be included no matter what theme the
user has selected, so either only apply changes to all available themes or
force all users to use the same theme, so that your CSS displays correctly.

Customize the CMS Theme

Moin provides one CMS theme: the Topside CMS Theme.

The CMS theme replaces the wiki navigation links used by editors and
administrators with a few links to the most important items within your wiki. Wiki
admins may want to make the CMS theme the default theme when:

	Casual visitors are interested in viewing the wiki content, but confused by the wiki navigation links.

	Errant bots are overloading your server by following the wiki navigation links on every page.

	Contributors do not mind logging in before editing.

Customizing the CMS header may be done as follows. Several restarts of the server may be required:

	Copy /templates/snippets.html to the wiki_local directory and find the macro cms_header.

	Usually the logo, sitename, and search form sections are not changed.

	If a link to login is wanted, leave the “request.user_agent” section as is, else remove the entire block.

	Add or remove links in the navibar section as required, defaults links include Home page
and Global Index.

	If many links are desired, consider using macro custom_panels.

	Test by logging in and setting “Topside CMS Theme” as your preferred theme.

	After testing, make the cms theme the default theme by adding theme_default = "topside_cms" to wikiconfig.

	Inform your editors to login and set another theme as their preferred theme.

	If the login link was removed, the login page is available by keying +login as the page name in the browser URL.

Here is the source code segment from snippets.html:

{# Header/Sidebar for topside_cms theme - see docs for tips on customization #}
{% macro cms_header() %}
 <header id="moin-header" lang="{{ theme_supp.user_lang }}" dir="{{ theme_supp.user_dir }}">
 {% block header %}

 {% if logo() %}
 <div id="moin-logo">

 {{ logo() }}

 </div>
 {%- endif %}

 {% if cfg.sitename %}

 {{ cfg.sitename }}

 {%- endif %}

 {% if request.user_agent and search_form %} {# request.user_agent is true if browser, false if run as moin dump-html #}
 {{ utils.header_search(search_form) }}
 {% endif %}

 {% if request.user_agent %} {# request.user_agent is true if browser, false if run as moin dump-html #}
 <ul id="moin-username" class="moin-header-links">
 {{ utils.user_login_logoff() }}

 {%- endif %}

 <ul id="moin-navibar" class="moin-header-links panel">
 {# wiki admins should add links and headings for key items within the local wiki below #}
 <li class="moin-panel-heading">Navigation
 <li class="wikilink">Start
 <li class="wikilink">Index

 {{ custom_panels() }}

 {% endblock %}
 </header>

{% endmacro %}

Displaying user avatars

Optionally, moin can display avatar images for the users, using gravatar.com
service. To enable it, add or uncomment this line in wikiconfig:

user_use_gravatar = True

Please note that using the gravatar service has some privacy issues:

	to register your image for your email at gravatar.com, you need to give them
your email address, which is the same as you use in your wiki user profile.

	when the wiki displays an avatar image on some item / view, the URL will be
exposed as referrer to the avatar service provider, so they will roughly
know which people read or work on which wiki items / views.

XStatic Packages

XStatic [https://readthedocs.org/projects/xstatic] is a packaging standard
to package external static files as a Python package, often third party.
That way they are easily usable on all operating systems, whether it has a package management
system or not.

In many cases, those external static files are maintained by someone else (like jQuery
javascript library or larger js libraries) and we definitely do not want to merge
them into our project.

For MoinMoin we require the following XStatic Packages in pyproject.toml:

	jquery [https://pypi.org/project/XStatic-jQuery]
for jquery lib functions loaded in the template file base.html

	jquery_file_upload [https://pypi.org/project/XStatic-jQuery-File-Upload]
loaded in the template file of index view. It allows to upload many files at once.

	bootstrap [https://pypi.org/project/XStatic-Bootstrap]
used by the basic theme.

	font_awesome [https://pypi.org/project/XStatic-Font-Awesome]
provides text icons.

	ckeditor [https://pypi.org/project/XStatic-CKEditor]
used in template file modify_text_html. A WYSIWYG editor similar to word processing
desktop editing applications.

	autosize [https://pypi.org/project/XStatic-autosize]
used by basic theme to adjust textarea on modify view.

	svgedit_moin [https://pypi.org/project/XStatic-svg-edit-moin]
is loaded at template modify_svg-edit. It is a fast, web-based, Javascript-driven
SVG editor.

	jquery_tablesorter [https://pypi.org/project/XStatic-JQuery.TableSorter/2.14.5.1]
used to provide client side table sorting.

	pygments [https://pypi.org/project/XStatic-Pygments]
used to style code fragments.

These packages are imported in wikiconfig by:

from xstatic.main import XStatic
names below must be package names
mod_names = [
 'jquery', 'jquery_file_upload',
 'bootstrap',
 'font_awesome',
 'ckeditor',
 'autosize',
 'svgedit_moin',
 'jquery_tablesorter',
 'pygments',
]
pkg = __import__('xstatic.pkg', fromlist=mod_names)
for mod_name in mod_names:
 mod = getattr(pkg, mod_name)
 xs = XStatic(mod, root_url='/static', provider='local', protocol='http')
 serve_files[xs.name] = xs.base_dir

In a template file you access the files of such a package by its module name:

url_for('serve.files', name='the mod name', filename='the file to load')

Adding XStatic Packages

The following example shows how you can enable the additional package
XStatic-MathJax [https://pypi.org/project/XStatic-MathJax] which is
used for mathml or latex formulas in an item’s content.

	install xstatic-mathjax (e.g. using pip install xstatic-mathjax)

	add the name ‘mathjax’ to to the list of mod_names in wikiconfig

	copy /templates/snippets.html to the wiki_local directory

	modify the snippets.html copy by adding the required fragment to the scripts macro:

{% macro scripts() -%}
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
 extensions: ["tex2jax.js"],
 jax: ["input/TeX","output/HTML-CSS"],
 tex2jax: {inlineMath: [["$","$"],["\\(","\\)"]]}
});
</script>
<script src="{{ url_for('serve.files', name='mathjax', filename='MathJax.js') }}"></script>
{%- endmacro %}

Custom Themes

In case you want to do major changes to how MoinMoin displays its pages, you
could also write your own theme.

Caution: developing your own theme means you also have to maintain and update it,
which normally requires a long-term effort.

To add a new theme, add a new directory under src/moin/themes/ where the directory
name is the name of your theme. Note the directory structure under the other existing
themes. Copy an info.json file to your theme directory and edit as needed.
Create a file named theme.css in the src/moin/themes/<theme name>/static/css/ directory.

To change the layout of the theme header, sidebar and footer, create a templates/ directory and
copy and modify the files layout.html and show.html from either src/moin/templates/ or one
of the existing theme templates directories.

For many themes, modifying the files noted above will be sufficient. If changes to
views are required, copy additional template files. If there is a requirement to change
the MoinMoin base code, please consider submitting a patch.

Authentication

MoinMoin uses a configurable auth list of authenticators, so the admin can
configure whatever he/she likes to allow for authentication. Moin processes this
list from left to right.

Each authenticator is an instance of some specific class, configuration of
the authenticators usually works by giving them keyword arguments. Most have
reasonable defaults though.

MoinAuth

This is the default authentication moin uses if you don’t configure something
else. The user logs in by filling out the login form with username and
password, moin compares the password hash against the one stored in the user’s
profile and if both match, the user is authenticated:

from moin.auth import MoinAuth
auth = [MoinAuth()] # this is the default!

HTTPAuthMoin

With HTTPAuthMoin moin does http basic authentication by itself without the help of
the web server:

from moin.auth.http import HTTPAuthMoin
auth = [HTTPAuthMoin(autocreate=True)]

If configured like that, moin will request authentication by emitting a
http header. Browsers then usually show some login dialogue to the user,
asking for username and password. Both then gets transmitted to moin and it
is compared against the password hash stored in the user’s profile.

Note: when HTTPAuthMoin is used, the browser will show that login dialogue, so
users must login to use the wiki.

GivenAuth

With GivenAuth moin relies on the webserver doing the authentication and giving
the result to moin, usually via the environment variable REMOTE_USER:

from moin.auth import GivenAuth
auth = [GivenAuth(autocreate=True, coding='utf-8')]

Using this method has some pros and cons:

	you can use lots of authentication extensions available for your web server

	but the only information moin will get via REMOTE_USER is the authenticated
user’s name, nothing else. So, e.g. for LDAP/AD, you won’t get additional
content stored in the LDAP directory.

	everything you won’t get, but which you need, will need to be manually stored
and updated in the user’s profile, e.g. the user’s email address, etc.

Please note that you must give the correct character set so that moin
can decode the username to unicode, if necessary. For environment variables
like REMOTE_USER, the coding might depend on your operating system.

If you do not know the correct coding, try: ‘utf-8’, ‘iso-8859-1’, …

Todo

add the usual coding(s) for some platforms (like windows)

To try it out, change configuration, restart moin and then use some non-ASCII
username (like with german umlauts or accented characters). If moin does not
crash (log a Unicode Error), you have likely found the correct coding.

For users configuring GivenAuth on Apache, an example virtual host configuration
file is included with MoinMoin in docs/examples/deployment/moin-http-basic-auth.conf.

LDAPAuth

With LDAPAuth you can authenticate users against a LDAP directory or MS Active Directory service.

LDAPAuth with single LDAP server

This example shows how to use LDAPAuth with a single LDAP/AD server:

from moin.auth.ldap_login import LDAPAuth
ldap_common_arguments = dict(
 # the values shown below are the DEFAULT values (you may remove them if you are happy with them),
 # the examples shown in the comments are typical for Active Directory (AD) or OpenLDAP.
 bind_dn='', # We can either use some fixed user and password for binding to LDAP.
 # Be careful if you need a % char in those strings - as they are used as
 # a format string, you have to write %% to get a single % in the end.
 #bind_dn = 'binduser@example.org' # (AD)
 #bind_dn = 'cn=admin,dc=example,dc=org' # (OpenLDAP)
 #bind_pw = 'secret'
 # or we can use the username and password we got from the user:
 #bind_dn = '%(username)s@example.org' # DN we use for first bind (AD)
 #bind_pw = '%(password)s' # password we use for first bind
 # or we can bind anonymously (if that is supported by your directory).
 # In any case, bind_dn and bind_pw must be defined.
 bind_pw='',
 base_dn='', # base DN we use for searching
 #base_dn = 'ou=SOMEUNIT,dc=example,dc=org'
 scope=2, # scope of the search we do (2 == ldap.SCOPE_SUBTREE)
 referrals=0, # LDAP REFERRALS (0 needed for AD)
 search_filter='(uid=%(username)s)', # ldap filter used for searching:
 #search_filter = '(sAMAccountName=%(username)s)' # (AD)
 #search_filter = '(uid=%(username)s)' # (OpenLDAP)
 # you can also do more complex filtering like:
 # "(&(cn=%(username)s)(memberOf=CN=WikiUsers,OU=Groups,DC=example,DC=org))"
 # some attribute names we use to extract information from LDAP (if not None,
 # if None, the attribute won't be extracted from LDAP):
 givenname_attribute=None, # often 'givenName' - ldap attribute we get the first name from
 surname_attribute=None, # often 'sn' - ldap attribute we get the family name from
 aliasname_attribute=None, # often 'displayName' - ldap attribute we get the aliasname from
 email_attribute=None, # often 'mail' - ldap attribute we get the email address from
 email_callback=None, # callback function called to make up email address
 coding='utf-8', # coding used for ldap queries and result values
 timeout=10, # how long we wait for the ldap server [s]
 start_tls=0, # usage of Transport Layer Security 0 = No, 1 = Try, 2 = Required
 tls_cacertdir=None,
 tls_cacertfile=None,
 tls_certfile=None,
 tls_keyfile=None,
 tls_require_cert=0, # 0 == ldap.OPT_X_TLS_NEVER (needed for self-signed certs)
 bind_once=False, # set to True to only do one bind - useful if configured to bind as the user on the first attempt
 autocreate=True, # set to True to automatically create/update user profiles
 report_invalid_credentials=True, # whether to emit "invalid username or password" msg at login time or not
)

ldap_authenticator1 = LDAPAuth(
 server_uri='ldap://localhost', # ldap / active directory server URI
 # use ldaps://server:636 url for ldaps,
 # use ldap://server for ldap without tls (and set start_tls to 0),
 # use ldap://server for ldap with tls (and set start_tls to 1 or 2).
 name='ldap1', # unique name for the ldap server, e.g. 'ldap_pdc' and 'ldap_bdc' (or 'ldap1' and 'ldap2')
 **ldap_common_arguments # expand the common arguments
)

auth = [ldap_authenticator1,] # this is a list, you may have multiple ldap authenticators
 # as well as other authenticators

customize user preferences (optional, see MoinMoin/config/multiconfig for internal defaults)
you maybe want to use user_checkbox_remove, user_checkbox_defaults, user_form_defaults,
user_form_disable, user_form_remove.

LDAPAuth with two LDAP servers

This example shows how to use LDAPAuth with a two LDAP/AD servers, such as in a setup
with a primary controller and backup domain controller:

... same as for single server (except the line with "auth =") ...
ldap_authenticator2 = LDAPAuth(
 server_uri='ldap://otherldap', # ldap / active directory server URI for second server
 name='ldap2',
 **ldap_common_arguments
)

auth = [ldap_authenticator1, ldap_authenticator2,]

AuthLog

AuthLog is not a real authenticator in the sense that it authenticates (logs in) or
deauthenticates (logs out) users. It is passively logging informations for
authentication debugging:

from moin.auth import MoinAuth
from moin.auth.log import AuthLog
auth = [MoinAuth(), AuthLog(),]

Example logging output:

2011-02-05 16:35:00,229 INFO MoinMoin.auth.log:22 login: user_obj=<moin.user.User at 0x90a0f0c name:'ThomasWaldmann' valid:1> kw={'username': 'ThomasWaldmann', 'attended': True, 'multistage': None, 'login_password': 'secret', 'login_username': 'ThomasWaldmann', 'password': 'secret', 'login_submit': ''}
2011-02-05 16:35:04,716 INFO MoinMoin.auth.log:22 session: user_obj=<MoinMoin.user.User at 0x90a0f6c name:'ThomasWaldmann' valid:1> kw={}
2011-02-05 16:35:06,294 INFO MoinMoin.auth.log:22 logout: user_obj=<MoinMoin.user.User at 0x92b5d4c name:'ThomasWaldmann' valid:False> kw={}
2011-02-05 16:35:06,328 INFO MoinMoin.auth.log:22 session: user_obj=None kw={}

Note: there is sensitive information like usernames and passwords in this
log output. Make sure you only use this for testing only and delete the logs when
done.

SMBMount

SMBMount is no real authenticator in the sense that it authenticates (logs in)
or deauthenticates (logs out) users. It instead catches the username and password
and uses them to mount a SMB share as this user.

SMBMount is only useful for very special applications, e.g. in combination
with the fileserver storage backend:

from moin.auth.smb_mount import SMBMount

smbmounter = SMBMount(
 # you may remove default values if you are happy with them
 # see man mount.cifs for details
 server='smb.example.org', # (no default) mount.cifs //server/share
 share='FILESHARE', # (no default) mount.cifs //server/share
 mountpoint_fn=lambda username: '/mnt/wiki/%s' % username, # (no default) function of username to determine the mountpoint
 dir_user='www-data', # (no default) username to get the uid that is used for mount.cifs -o uid=...
 domain='DOMAIN', # (no default) mount.cifs -o domain=...
 dir_mode='0700', # (default) mount.cifs -o dir_mode=...
 file_mode='0600', # (default) mount.cifs -o file_mode=...
 iocharset='utf-8', # (default) mount.cifs -o iocharset=... (try 'iso8859-1' if default does not work)
 coding='utf-8', # (default) encoding used for username/password/cmdline (try 'iso8859-1' if default does not work)
 log='/dev/null', # (default) logfile for mount.cifs output
)

auth = [....., smbmounter] # you need a real auth object in the list before smbmounter

smb_display_prefix = "S:" # where //server/share is usually mounted for your windows users (display purposes only)

Todo

check if SMBMount still works as documented

Transmission security

Credentials

Some of the authentication methods described above will transmit credentials,
like usernames and password, in unencrypted form:

	MoinAuth: when the login form contents are transmitted to moin, they contain
username and password in clear text.

	HTTPAuthMoin: your browser will transfer username and password in a encoded
(but NOT encrypted) form with EVERY request; it uses http basic auth.

	GivenAuth: check the potential security issues of the authentication
method used by your web server; for http basic auth please see HTTPAuthMoin.

Contents

http transmits everything in clear text and is therefore not encrypted.

Encryption

Transmitting unencrypted credentials or contents can cause serious issues in many
scenarios.

We recommend you make sure the connections are encrypted, like with https or VPN
or an ssh tunnel.

For public wikis with very low security / privacy needs, it might not be needed
to encrypt the content transmissions, but there is still an issue for the
credential transmissions.

When using unencrypted connections, wiki users are advised to make sure they
use unique credentials and not reuse passwords that are used for other purposes.

Password security

Password strength

As you might know, many users are bad at choosing reasonable passwords and some
are tempted to use easily crackable passwords.

To help users choose reasonable passwords, moin has a simple builtin
password checker that is enabled by default and does some sanity checks,
so users don’t choose easily crackable passwords.

It does check:

	length of password (default minimum: 8)

	amount of different characters in password (default minimum: 5)

	password does not contain user name

	user name does not contain password

	password is not a keyboard sequence (like “ASDFghjkl” or “987654321”),
currently we have only US and DE keyboard data built-in.

It does not check:

	whether the password is in a well-known dictionary or password list

	whether a password cracker can break it

If you are not satisfied with the default values, you can easily customize the
checker:

from moin.config.default import DefaultConfig, _default_password_checker
password_checker = lambda cfg, name, pw: _default_password_checker(
 cfg, name, pw, min_length=10, min_different=6)

You could also completely replace it with your own implementation.

If your site has rather low security requirements, you can disable the checker
by:

password_checker = None # no password checking

Password storage

Moin never stores wiki user passwords in clear text, but uses strong
cryptographic hashes provided by the “passlib” library, see there for details:

https://passlib.readthedocs.io/en/stable/

The passlib docs recommend 3 hashing schemes that have good security:
sha512_crypt, pbkdf2_sha512 and bcrypt (bcrypt has additional binary/compiled
package requirements, please refer to the passlib docs in case you want to use
it).

By default, we use sha512_crypt hashes with default parameters as provided
by passlib (this is same algorithm as moin >= 1.9.7 used by default).

In case you experience slow logins or feel that you might need to tweak the
hash generation for other reasons, please read the passlib docs. moin allows
you to configure passlib’s CryptContext params within the wiki config, the
default is this:

passlib_crypt_context = dict(
 schemes=["sha512_crypt",],
)

Authorization

Moin uses Access Control Lists (ACLs) to specify who is authorized to perform
a given action. ACLs enable wiki administrators and possibly users to choose
between soft security and hard security.

	if your wiki is rather open (soft security), you make it easy to contribute, e.g. a
user who is not a regular user of your wiki could fix some typos he has just
found. However, a hostile user or bot could easily add spam into your wiki.
In this case, an active user community can quickly detect and remove the spam.

	if your wiki is rather closed (hard security), e.g. you require every user to first apply for an
account and to log in before being able to do changes, you will rarely get
contributions from casual users and possibly discourage contributions from
members of your community. But, getting spam is then less likely.

	ACLs provide the means of using both methods. Key wiki items that are frequently viewed
and infrequently changed may be updated only by selected users while other items that
are frequently changed may be updated by any user.

Moin’s default configuration makes use of hard security to prevent unwanted spam.
Wiki administrators may soften security by reconfiguring the default ACLs.

As wiki items are created and updated, the default configuration may be overridden
on specific items by setting an ACL on that item.

Hardening security implies that there will be a registration and login process that enables
individual users to gain privileges. While wikis with a small user community may function
with ACLs specifying only usernames, larger wikis will make use of ACLs that reference
groups or lists of usernames. The definitions of built-in groups and creation of groups are
discussed below under the headings ACLs - special groups and Groups.

ACL for functions

Moin has some built in functions that are protected by ACLs:

	superuser - used for miscellaneous administrative functions. Give this only to
highly trusted people

Example:

acl_functions = 'YourName:superuser'

ACLs for contents

This type of ACL controls access to content stored in the wiki. Wiki items
may have ACLs defined in their metadata. Within wikiconfig, ACLs are specified
per namespace and storage backend (see storage backend docs for details). The
example below shows an entry for the default namespace:

default_acl=dict(before='SuperUser:read,write,create,destroy,admin',
 default='TrustedEditorGroup:read,write,create,destroy,admin Known:read,write,create',
 after='All:read',
 hierarchic=False,),

As shown above, before, default and after ACLs are specified. The default ACL
is only used if no ACL is specified in the metadata of the target item.

digraph acl_order {
rankdir=LR;
"before" -> "item acl from metadata (if specified)" -> "after";
"before" -> "default (otherwise)" -> "after";
}
How to use before, default, and after:

	before is usually used to force something, for example if you want to give some
wiki admin all permissions indiscriminately; in the example above, no one can create an item
ACL rule locking out SuperUser’s access

	default is the behavior if no ACL was created in the item’s metadata; above, only members of a trusted group can write ACL rules or delete items, and a user must be logged in (known) to write or create items

	after is rarely used and when it is, it is used to “not forget something unless otherwise specified”;
above, all users may read all items unless blocked (or given more privileges) by an ACL on the target item

When configuring content ACLs, you can choose between standard (flat) ACL
processing and hierarchic ACL processing. Hierarchic processing means that
subitems inherit ACLs from their parent items if they don’t have an ACL themselves.

Note that while hierarchic ACLs are rather convenient sometimes, they make the
system more complex. You have to be very careful with permission
changes happening as a result of changes in the hierarchy, such as when you create,
rename or delete items. When multiple item names are used the complexity increases
even more because all parents are searched for ACLs – if conflicting
allow/deny ACLs are found allow always wins.

Supported capabilities (rights):

	read - read content

	write - write (edit, modify, delete) content

	create - create new items

	destroy - completely destroy revisions or items; to be given only to fully-trusted users

	admin - change (create, remove) ACLs for the item; to be given only to fully-trusted users

The write capability includes the authority to delete an item since any user with write authority
may edit and remove or replace all content. A deleted item does not appear in the Global Index,
but the deletion event does appear in the global history. To recover a deleted item, find the
deleted item line in global history, click the link to the item’s history, and then click a revert
link to one of the prior revisions.

ACLs - special groups

In addition to the groups provided by the group backend(s), there are some
special group names available within ACLs. These names are case-sensitive
and must be capitalized as shown:

	All - a virtual group containing every user, including users who have not logged in

	Known - a virtual group containing every logged-in user

	Trusted - a virtual group containing every logged-in user who was logged
in by some specific “trusted” authentication method other than the default MoinAuth.

ACLs - basic syntax

An ACL is a unicode string with one or more access control entries
which are space separated.

An entry is a colon-separated set of two values:

	the left side is a comma-separated list of user and/or group names

	the right side is a comma-separated list of rights / capabilities for those users/groups.

An ACL is processed from left to right, where the first left-side match counts.

Example:

"SuperMan,WonderWoman:read,write,create,destroy,admin All:read,write"

If “SuperMan” is currently logged in and moin processes this ACL, it will find
a name match in the first entry. If moin wants to know whether he may destroy,
the answer will be “yes”, as destroy is one of the capabilities/rights listed
on the right side of this entry.

If “JoeDoe” is currently logged in and moin processes this ACL, the first entry
won’t match, so moin will proceed left-to-right and look at the second entry.
Here we have the special group name, “All” (and JoeDoe is obviously a member of
this group), so this entry matches.
If moin wants to know whether he may destroy, the answer will be “no”, as
destroy is not listed on the right side of the “All” entry. If moin wants to know
whether he may write, the answer will be “yes”.

Notes:

	As a consequence of the left-to-right and first-match-counts processing,
you must order ACL entries so that the more specific ones (like for
“SuperMan”) are left of the less specific ones.
Usually, you want this order:

	usernames

	special groups

	more general groups

	Trusted

	Known

	All

	Do not put any spaces into an ACL entry, unless it is part of a user or
group name.

	A right that is not explicitly given by an applicable ACL is denied.

ACLs - entry prefixes

To make the system more flexible, there are two ways to modify an ACL entry: prefixing it with a ‘+’ or a ‘-‘.

If you use one of the two, MoinMoin will search for both a username and permission, and a match will have to match
both the name of user (left-side) and the permission MoinMoin is searching for (right-side), otherwise
it will continue with the next entry.

‘+’ indicates that MoinMoin should give the permission(s) specified on the right side.

‘-’ indicates that MoinMoin should deny the permission(s) specified on the right side.

Example:

"+SuperMan:create,destroy,admin -Idiot:write All:read,write"

If “SuperMan” is currently logged in and moin wants to know whether he may
destroy, it’ll find a match in the first entry, because the name matches and permission
in question matches. As the prefix is ‘+’, the answer is “yes”.

If moin wants to know whether SuperMan may write, the first entry will not match
on both sides, so moin will proceed and look at the second entry. It doesn’t
match, so it will look at the third entry. Of course “SuperMan” is a member of
group “All”, so we have a match here. As “write” is listed on the right side,
the answer will be “yes”.

If the rule above did not have a leading + before SuperMan and moin wants to know
whether SuperMan may write, then the left side matches at the first entry and the
answer will be “no” because “write” is not listed on the right side.

If “Idiot” is currently logged in and moin wants to know whether he may write,
it will find no match in the first entry, but the second entry will match. As
the prefix is ‘-’, the answer will be “no”. Because a match has been made,
the third entry is not processed.

Notes:

	you usually use these modifiers if most of the rights for a given user shall be specified
later, but a special user or group should be treated slightly different for
a few special rights.

ACLs - Default entry

There is a special ACL entry, “Default”, which expands itself in-place to the
default ACL.

This is useful, for example, if when you mostly want the default ACL, but
with a slight modification, but you don’t want to type in the default ACL
all the time and you also want to be able to change the default ACL without
having to edit lots of items.

Example:

"-NotThisGuy:write Default"

This will behave as usual, except that “NotThisGuy” will never be given write
permission.

Secrets

Moin uses secrets to encrypt or cryptographically sign something like:

	tickets

Secrets are long random strings and not a reuse of any of your passwords.
Don’t use the strings shown below, they are NOT secret as they are part of the
moin documentation. Make up your own secrets:

secrets = {
 'security/ticket': 'asdasdvarebtZertbaoihnownbrrergfqe3r',
}

If you don’t configure these secrets, moin will detect this and reuse Flask’s
SECRET_KEY for all secrets it needs.

Groups

Group names can be used in place of usernames within ACLs.
There are three types of groups: WikiGroups, ConfigGroups, and CompositeGroups.
A group is a list of unicode names, where a name may be either a username or
another group name.

Use of groups will reduce the administrative effort required to maintain ACL rules,
especially in wikis with a large community of users. Rather than change multiple
ACL rules to reflect a new or departing member, a group may be updated. To achieve
maximum benefit, some advance planning is required to determine the kind and names
of groups suitable for your wiki.

The wiki server must be restarted to reflect updates made to ConfigGroups
and CompositeGroups.

Names of WikiGroup items must end in “Group”. There is no such requirement for the
names of ConfigGroups or CompositeGroups.

Group backend configuration

The WikiGroups backend is enabled by default so there is no need to add the following to wikiconfig:

def groups(self):
 from moin.datastructures import WikiGroups
 return WikiGroups()

To create a WikiGroup that can be used in an ACL rule:

	Create a wiki item with a name ending in “Group” (the content of the item is not relevant).

	Edit the metadata and add entries under the heading “Wiki Groups”, one entry per line.

	Leading and trailing spaces are ignored, internal spaces are accepted.:

JaneDoe
JohnDoe
SomeOtherGroup

	Use the new group name in one or more ACL rules.

	For public wikis, it is recommended that a TrustedEditorGroup (or similar name) be created.

The ConfigGroups backend uses groups defined in the configuration file. Adding the
following to wikiconfig creates an EditorGroup and an AdminGroup and prevents
the use of any WikiGroups:

def groups(self):
 from moin.datastructures import ConfigGroups
 groups = {'EditorGroup': ['AdminGroup', 'John', 'JoeDoe', 'Editor1'],
 'AdminGroup': ['Admin1', 'Admin2', 'John']}
 return ConfigGroups(groups)

CompositeGroups enable both ConfigGroups and WikiGroups to be used. The example
below defines the same ConfigGroups used above and enables the use of WikiGroups.
Note that order matters! Since ConfigGroups backend is first in the return tuple,
the EditGroup and AdminGroup defined below will be used should there be WikiGroup
items with the same names:

def groups(self):
 from moin.datastructures import ConfigGroups, WikiGroups, CompositeGroups
 groups = {'EditorGroup': ['AdminGroup', 'John', 'JoeDoe', 'Editor1'],
 'AdminGroup': ['Admin1', 'Admin2', 'John']}
 return CompositeGroups(ConfigGroups(groups), WikiGroups())

Dict backend configuration

The dict backend provides a means for translating phrases in documentation through the
use of the GetVal macro.

The WikiDicts backend is enabled by default so there is no need to add the following to wikiconfig:

def dicts(self):
 from moin.datastructures import WikiDicts
 return WikiDicts()

To create a WikiDict that can be used in an GetVal macro:

	Create a wiki item with a name ending in “Dict” (the content of the item is not relevant)

	Edit the metadata and add an entry under the heading “Wiki Dict”:

apple=red
banana=yellow
pear=green

The ConfigDicts backend uses dicts defined in the configuration file. Adding the
following to wikiconfig creates a OneDict and a NumbersDict and prevents
the use of any WikiDicts:

def dicts(self):
 from moin.datastructures import ConfigDicts
 dicts = {'OneDict': {'first_key': 'first item',
 'second_key': 'second item'},
 'NumbersDict': {'1': 'One',
 '2': 'Two'}}
 return ConfigDicts(dicts)

CompositeDicts enable both ConfigDicts and WikiDicts to be used. The example
below defines the same ConfigDicts used above and enables the use of WikiDicts.
Note that order matters! Since ConfigDicts backend is first in the return tuple,
the OneDict and NumbersDict defined below will be used should there be WikiDict
items with the same names:

def dicts(self):
 from moin import ConfigDicts, WikiDicts, CompositeDicts
 dicts = {'OneDict': {'first_key': 'first item',
 'second_key': 'second item'},
 'NumbersDict': {'1': 'One',
 '2': 'Two'}}
 return CompositeDicts(ConfigDicts(dicts),
 WikiDicts())

Storage

MoinMoin supports storage backends as different ways of storing wiki items.

Setup of storage is rather complex and layered, involving:

	Routing middleware that dispatches by namespace to the respective backend

	ACL checking middleware that makes sure nobody accesses something he/she is not
authorized to access

	Indexing mixin that indexes some data automatically on commit, so items can
be selected / retrieved faster.

	storage backends that store wiki items

create_simple_mapping

This is a helper function to make storage setup easier when your wiki will be
using only the predefined namespaces and one kind of backend (OS file system, sqla or sqlite).
It creates a simple setup that defines storage backends for these namespaces:

	default - items that define wiki content

	users - personnal user content

	userprofiles - user metadata such as timezone, subscriptions, etc.

	help-en - English language help pages for editors

	help-common - media items used by help-en

For each namespace, the following structures are created:

	configure ACLs protecting the namespaces

	setup router middleware that dispatches to the namespace backends

	setup a indexing mixin that maintains an index of all namespaces

Call it as follows:

from moin.storage import create_simple_mapping

namespace_mapping, backend_mapping, acl_mapping = create_simple_mapping(
 uri=...,
 default_acl=dict(before=...,
 default=...,
 after=...,
 hierarchic=...,),
 users_acl=dict(before=...,
 default=...,
 after=...,
 hierarchiv=False,),
 userprofiles_acl=dict(before=...,
 default=...,
 after=...,
 hierarchiv=False,),
)

The *_acl variables are dictionaries specifying the ACLs for
each namespace. See the docs about ACLs.

The uri depends on the kind of storage backend and stores you want to use,
see below. Usually it is a URL-like string in the form of:

stores:fs:/srv/mywiki/%(backend)s/%(kind)s

stores is the name of the backend, followed by a colon, followed by a store
specification. fs is the type of the store, followed by a specification
that makes sense for the fs (filesystem) store, i.e. a path with placeholders.

%(backend)s placeholder will be replaced by the namespace for
the respective backend. %(kind)s will be replaced by ‘meta’ or ‘data’
later.

The mapping created will look like this:

	Namespace

	Filesystem path for storage

	default

	/srv/mywiki/default/

	users

	/srv/mywiki/users/

	userprofiles

	/srv/mywiki/userprofiles/

	help-en

	/srv/mywiki/help-en/

	help-common

	/srv/mywiki/help-common/

If your wiki will be using custom namespaces then you cannot use the
create_simple_mapping method. See the create_mapping method in the
namespaces section below.

protecting middleware

Features:

	protects access to lower storage layers by ACLs (Access Control Lists)

	makes sure there won’t be ACL security issues, even if upper layers have bugs

	if you use create_simple_mapping, you just give the ACL parameters; the
middleware will be set up automatically by moin.

routing middleware

Features:

	dispatches storage access to different backends depending on the namespace

	if you use create_simple_mapping, the router middleware will be set up
automatically by moin.

indexing middleware

Features:

	maintains an index for important metadata values

	speeds up looking up / selecting items

	makes it possible for lower storage layers to be simpler

	the indexing middleware will be set up automatically by moin.

stores backend

This is a backend that ties together 2 stores to form a backend: one for meta, one for data

fs store

Features:

	stores into the filesystem

	store metadata and data into separate files/directories

Configuration:

from moin.storage import create_simple_mapping

data_dir = '/srv/mywiki/data'
namespace_mapping, acl_mapping = create_simple_mapping(
 uri='stores:fs:{0}/%(nsname)s/%(kind)s'.format(data_dir),
 default_acl=dict(before='WikiAdmin:read,write,create,destroy',
 default='All:read,write,create',
 after='',),
 users_acl=dict(before='WikiAdmin:read,write,create,destroy',
 default='All:read,write,create',
 after='',),
 # userprofiles is for internal use, contains only user metadata, access denied to all
 userprofiles_acl=dict(before='All:',
 default='',
 after='',),
)

sqla store

Features:

	stores data into an (SQL) database / table

	can either use 1 database per store or 1 table per store and you need to
give different table names then

	uses slqalchemy (without the ORM) for database abstraction

	supports multiple types of databases, for example:

	sqlite (default, comes built-into Python)

	postgresql

	mysql

	and others, see sqlalchemy docs.

uri for create_simple_mapping looks like e.g.:

stores:sqla:sqlite:////srv/mywiki/data/mywiki_%(nsname)s_%(kind).db
stores:sqla:sqlite:////srv/mywiki/data/mywiki_%(nsname)s.db::%(kind)s
stores:sqla:mysql://myuser:mypassword@localhost/mywiki_%(nsname)s::%(kind)s
stores:sqla:postgres://myuser:mypassword@localhost/mywiki_%(nsname)s::%(kind)s

The uri part after “sqla:” is like:

DBURI::TABLENAME

Please see the sqlalchemy docs about the DBURI part.

Grant ‘myuser’ (his password: ‘mypassword’) full access to these databases.

sqlite store

Features:

	directly talks to sqlite, without using sqlalchemy

	stores data into an sqlite database, which is a single file

	can either use 1 database per store or 1 table per store and you need to
give different table names then

	can optionally compress/decompress the data using zlib: default compression
level is 0, which means “do not compress”

uri for create_simple_mapping looks like e.g.:

stores:sqlite:/srv/mywiki/data/mywiki_%(nsname)s_%(kind)s.db
stores:sqlite:/srv/mywiki/data/mywiki_%(nsname)s.db::%(kind)s
stores:sqlite:/srv/mywiki/data/mywiki_%(nsname)s.db::%(kind)s::1

The uri part after “sqlite:” is like:

PATH::TABLENAME::COMPRESSION

It uses “::” as separator to support windows pathes which may have “:” after
the drive letter.

memory store

Features:

	keeps everything in RAM

	if your system or the moin process crashes, all data is lost, so definitely not for production use

	mostly intended for testing

	single process only

fileserver backend

Features:

	exposes a part of the filesystem as read-only wiki items

	files will show up as wiki items

	with 1 revision

	with as much metadata as can be made up from the filesystem metadata

	directories will show up as index items, listing links to their contents

	might be useful together with SMBMount pseudo-authenticator

namespaces

Moin has support for multiple namespaces. You can configure them per your needs.
URLs for items within a namespace are similar to sub-items.

To configure custom namespaces, find the section in wikiconfig.py that looks similar to this:

namespaces = {
 # maps namespace name -> backend name
 # these 3 standard namespaces are required, these have separate backends
 NAMESPACE_DEFAULT: 'default',
 NAMESPACE_USERS: 'users',
 NAMESPACE_USERPROFILES: 'userprofiles',
 # namespaces for editor help files are optional, if unwanted delete here and in backends and acls
 NAMESPACE_HELP_COMMON: 'help-common', # contains media files used by other language helps
 NAMESPACE_HELP_EN: 'help-en', # replace this with help-de, help-ru, help-pt_BR etc.
 # define custom namespaces using the default backend
 # 'foo': 'default',
 # custom namespace with a separate backend (a wiki/data/bar directory will be created)
 # 'bar': 'bar',
}
backends = {
 # maps backend name -> storage
 # the feature to use different storage types for each namespace is not implemented so use None below.
 # the storage type for all backends is set in 'uri' above,
 # all values in `namespace` dict must be defined as keys in `backends` dict
 'default': None,
 'users': None,
 'userprofiles': None,
 # help namespaces are optional
 'help-common': None,
 'help-en': None,
 # required for bar namespace if defined above
 # 'bar': None,
}
acls = {
 # maps namespace name -> acl configuration dict for that namespace
 #
 # One way to customize this for large wikis is to create a TrustedEditorsGroup item with
 # ACL = "TrustedEditorsGroup:read,write All:"
 # add a list of user names under the item's User Group metadata heading. Item content does not matter.
 # Every user in YOUR-TRUSTED-EDITOR-GROUP will be able to add/delete users.
 #
 # most wiki data will be stored in NAMESPACE_DEFAULT
 NAMESPACE_DEFAULT: dict(
 before='YOUR-SUPER-EDITOR:read,write,create,destroy,admin',
 default='YOUR-TRUSTED-EDITORS-GROUP:read,write,create All:read',
 after='',
 hierarchic=False,),
 # user home pages should be stored here
 NAMESPACE_USERS: dict(
 before='YOUR-SUPER-EDITOR:read,write,create,destroy,admin',
 default='YOUR-TRUSTED-EDITORS-GROUP:read,write,create All:read',
 after='',
 # True enables possibility of an admin creating ACL rules for a user's subpages
 hierarchic=True,),
 # contains user data that must be kept secret, dis-allow access for all
 NAMESPACE_USERPROFILES: dict(
 before='All:',
 default='',
 after='',
 hierarchic=False,),
 # editor help namespacess are optional
 'help-common': dict(
 before='YOUR-SUPER-EDITOR:read,write,create,destroy,admin',
 default='YOUR-TRUSTED-EDITORS-GROUP:read,write,create All:read',
 after='',
 hierarchic=False,),
 'help-en': dict(
 before='YOUR-SUPER-EDITOR:read,write,create,destroy,admin',
 default='YOUR-TRUSTED-EDITORS-GROUP:read,write,create All:read',
 after='',
 hierarchic=False,),
}
namespace_mapping, backend_mapping, acl_mapping = create_mapping(uri, namespaces, backends, acls,)
define mapping of namespaces to unique item_roots (home pages within namespaces).
root_mapping = {'users': 'UserHome', }
default root, use this value by default for all namespaces
default_root = 'Home'

Edit the above renaming or deleting the lines with foo and bar and adding the desired custom namespaces.
Be sure all the names in the namespaces dict are also added to the acls dict. All of the values in the
namespaces dict must be included as keys in the backends dict.

There cannot be an item with the same name as a namespace. Using the example above, if import19 is used
to convert a moin 1.9 wiki to moin 2.0, then an item foo would be renamed to foo/fooHome.

Mail configuration

Sending E-Mail

Moin can optionally send E-Mail. Possible uses:

	send out item change notifications

	enable users to reset forgotten passwords

	inform admins about runtime exceptions

You need to configure some settings before sending E-Mail can be supported:

the "from:" address [Unicode]
mail_from = "wiki <wiki@example.org>"

a) using an SMTP server, e.g. "mail.provider.com" with optional `:port`
appendix, which defaults to 25 (set None to disable mail)
mail_smarthost = "smtp.example.org"

if you need to use SMTP AUTH at your mail_smarthost:
#mail_username = "smtp_username"
#mail_password = "smtp_password"

b) alternatively to using SMTP, you can use the sendmail commandline tool:
#mail_sendmail = "/usr/sbin/sendmail -t -i"

Todo

describe more moin configuration

Admin Traceback E-Mails

If you want to enable admins to receive Python tracebacks, you need to configure
the following:

list of admin emails
admin_emails = ["admin <admin@example.org>"]

send tracebacks to admins
email_tracebacks = True

Please also check the logging configuration example in docs/examples/config/logging/email.

User E-Mail Address Verification

At account creation time, Moin can require new users to verify their E-Mail
address by clicking a link that is sent to them.

Make sure that Moin is able to send E-Mails (see previous section) and add the
following line to your configuration file to enable this feature:

user_email_verification = True

Framework Configuration

Things you may want to configure for Flask and its extensions (see
their docs for details):

for Flask
SECRET_KEY = 'you need to change this so it is really secret'
DEBUG = False # use True for development only, not for public sites!
TESTING = False # if true, some servers will detect file changes and restart
#SESSION_COOKIE_NAME = 'session'
#PERMANENT_SESSION_LIFETIME = timedelta(days=31)
#USE_X_SENDFILE = False
#LOGGER_NAME = 'MoinMoin'

for Flask-Caching:
#CACHE_TYPE = 'filesystem'
#CACHE_DIR = '/path/to/flask-cache-dir'
#CACHE_THRESHOLD = 300 # expiration time in seconds

Logging Configuration

By default, logging is configured to emit output on stderr. This will work
well for the built-in server (it will show up on the console) or for Apache2 and similar
(logging will be put into error.log).

Logging is very configurable and flexible due to the use of the logging
module of the Python standard library.

The configuration file format is described there:

https://docs.python.org/3/library/logging.config.html#configuration-file-format

There are also some logging configurations in the
docs/examples/config/logging/ directory.

Logging configuration needs to be done very early, usually it will be done
from your adaptor script, e.g. moin.wsgi:

from moin import log
log.load_config('wiki/config/logging/logfile')

You have to fix that path to use a logging configuration matching your
needs (use an absolute path).

Please note that the logging configuration has to be a separate file, so don’t
try this in your wiki configuration file!

 Changes in MoinMoin

Changes in MoinMoin

MoinMoin Version History

Please note: It is recommended that existing wiki’s be upgraded to the
latest moin 1.9.x release before converting to Moin 2. However, this may
not be a necessary step as the 1.9.x file structure has not changed recently.

Version 2.0.0alpha

This is an unstable alpha release not suitable for a production wiki,
test carefully and report new issues and feature requests on the issue tracker:
https://github.com/moinwiki/moin/issues.

Fixes

	Major rewrite of MoinMoin 1.9.x

New features

	Python3.9+

	Supports moinwiki, markdown, rst, and DocBook markup languages

	HTML markup support by CKEditor, same version used in moin 1.9.x

	MediaWiki markup support needs work

	Editor help docs optional, can be loaded into a wiki namespace

	New/revised themes: topside, topside-cms, modernized, basic

	EmeraldTree

	Flask

	Flatland

	FontAwesome

	Jinja2

	Jquery

	Whoosh

	Xstatic

Missing features from 1.9.x

	SVG editor

	LDAP may have missing dependencies depending upon OS flavor

	WikiDicts have limited function, does not use Babel translations

Other changes

	GitHub used for issue tracking: https://github.com/moinwiki/moin/issues

	See https://moin-20.readthedocs.io/en/latest/ for Sphinx formatted docs

 Upgrading

Upgrading

Note

Internally, moin2 is very different than moin 1.x.

moin 2.0 is not just a +0.1 step from 1.9 (like 1.8 -> 1.9), but the
change of the major version number is indicating major and incompatible changes.

So please consider it to be different and incompatible software that tries
to be compatible in some areas:

	Server and wiki engine Configuration: expect to review/rewrite it

	Wiki content: expect 90% compatibility for existing moin 1.9 content.

	The most commonly used simple moin wiki markup (like headlines, lists, bold) has not changed

	CamelCase auto links will be converted to explicit [[CamelCase]] links

	[[attachment:my.jpg]] will be converted to [[/my.jpg]]

	{{attachment:my.jpg}} will be converted to {{/my.jpg}}

	expect to change custom macros, parsers, action links, 3rd party extensions

From moin < 1.9

If you run an older moin version than 1.9, please first upgrade to a recent
moin 1.9.x version (preferably >= 1.9.7) before upgrading to moin2.
You may want to run that for a while to be sure everything is working as expected.

Note: Both moin 1.9.x and moin2 are WSGI applications.
Upgrading to 1.9 first also makes sense concerning the WSGI / server side.

From moin 1.9.x

If you want to keep your user’s password hashes and migrate them to moin2,
make sure you use moin >= 1.9.7 WITH enabled passlib support and that all
password hashes stored in user profiles are {PASSLIB} hashes. Other hashes
will get removed in the migration process and users will need to do password
recovery via email (or with admin help, if that does not work).

Backup

Have a backup of everything, so you can go back in case it doesn’t do what
you expect. If you have a testing machine, it is a good idea to try it there
first and not directly modify your production machine.

Install moin2

Install and configure moin2, make it work, and start configuring it from
the moin2 sample config. Do not just use your 1.9 wikiconfig.

Adjusting the moin2 configuration

It is essential that you edit wikiconfig.py before you import your 1.9
data. In particular, review the settings for:

- sitename
- interwikiname
- SECRET_KEY
- secrets
- default_acl
- users_acl

Clean up your moin 1.9 data

It is a good idea to clean up your 1.9 data first, before trying to import
it into moin2. In doing so you can avoid quite some
warnings that the moin2 importer would produce.

You do this with moin 1.9, using these commands:

moin ... maint cleanpage
moin ... maint cleancache

Deleted pages will not be migrated. A message will be written to the
log for each deleted page.

Importing your moin 1.9 data

Before importing your existing wiki data please ensure you have created an instance
and index as described in the install section above using commands:

moin create-instance
moin index-create

The import19 cli subcommand will read your 1.9 data_dir (pages, attachments and users),
convert the data, write it to your moin2 storage and build the index:

moin import19 --data_dir /<path to moin1.9>/wiki/data

Please review the logfile to find out whether the importer had critical issues with your data.

By default, all items using moin 1.9 markup are converted to moin 2 markup. The converted
revision will have a timestamp one second later than the last revision’s timestamp to preserve
revision history.

Page revisions that were created with leading #format creole and #format rst commands
will retain the creole and rst markups.

There is an additional option to convert pages with moin wiki markup using one of the other moin2
output converters: markdown, rst, html, or docbook.
Add the –markup_out or -m option to the moin import19 command above. To
convert the last revision of all pages with moin wiki markup to markdown:

-m markdown

The import19 process will create a wiki directory structure different from moin 1.9.
There will be three namespaces under /wiki/data: “default”, “userprofiles”, and “users”.
Each namespace will have “data” and “meta” subdirectories. Additional custom namespaces can
be created by editing wikiconfig.py.

Most of the data from the 1.9 pages directory will be converted to the “default” directory. User
home pages and subpages will be converted to the “users” directory. The data from the 1.9 “users”
directory will be converted to the “userprofiles” directory. The “userprofiles” directory
contains data used internally and should always be protected from any access by ACLs.

Testing

Review the logs for error messages. Start the moin server and try the “Index” and “History”
views to see what is included. Check whether your data is complete and rendering correctly.

If you find issues with data migration from moin 1.9 to 2, please check the
moin2 issue tracker.

Keep your backups

Make sure you keep all backups of your moin 1.9 installation, such as code, config,
data, just in case you are not happy with moin2 and need to revert to the old version.

Converting after reverting

The import19 process converts text items using Moinmoin 1.9 syntax to
Moinmoin 2.0 syntax.

The conversion is accomplished by creating a new revision of each moin wiki text item.
Click the History link under the Item Views panel to view the revisions.
The latest revision will have a content type of “Moinmoin” while the older revisions
created prior to conversion will have a content type of “Moinmoin 1.9”
Click the Diff link to see the content changes made by import19.

If a moin wiki item is reverted to a revision having a content type of “Moinmoin 1.9”
with embedded old style CamelCase auto links and/or attachments ({{attachment:my.jpg}}),
the revision is not converted to the Moinmoin 2 syntax automatically. Editors must do
the conversion by clicking the Convert link within the Item Views panel.

Reverted revisions left in the Moinmoin 1.9 format will render correctly and
the reverted item may be updated and saved using the old 1.9 syntax. However,
it is recommended that all such revisions be converted to the new moin syntax
because the old CamelCase and attachment conventions are deprecated and will
never be included in the moin 2 docs.

 Backup and Restore

Backup and Restore

Full Backup / Restore

The best way to recover from data loss is to have a full backup of your machine.
With this backup you can easily restore your machine to a working condition.

The procedure below explains how to selectively backup only the files
essential to your MoinMoin installation. While there is no need to maintain both a full
and a selective backup, having at least one of the two is strongly recommended.

Selective Backup

If you want a backup of MoinMoin and your data, then backup the following:

	your data

	moin configuration, e.g. wikiconfig.py

	logging configuration, e.g. logging.conf

	moin deployment script, e.g. moin.wsgi

	web server configuration, e.g. apache virtualhost config

	optional: moin code + dependencies; you should at least know which version
you ran, so you can reinstall that version when you need to restore

To create a dump of all data stored in moinmoin (wiki items, user profiles), run the
following command:

moin save --all-backends --file backup.moin

Please note that this file contains sensitive data like user profiles, wiki
contents, so store your backups in a safe place that no unauthorized
individual can access.

Backups require valid metadata to produce files which can be loaded
in particular, the size attribute must be correct for each revision.
if bad metadata is found during the backup,
there will be a warning logged and it is recommended
to run moin validate-metadata -a -f
see Validate and Optionally Fix Metadata

Selective Restore

To restore all software and configuration files to their original
place, create an empty wiki first:

moin index-create

To load the backup file into your empty wiki, run:

moin load --file backup.moin

The index is removed and automatically recreated by the load command.

 Indexes

Indexes

General

MoinMoin relies strongly on indexes that accelerate access to item metadata and
data, and makes it possible to have simple backends, because the index layer
is doing all the hard and complex work.

Indexes are used internally for many operations like item lookup, history,
iterating over items, search, interactive search, etc.

MoinMoin won’t be able to start with damaged, inaccessible or non-existing indexes.
As a result, you will need to configure and initialize indexing correctly first.

moin will automatically update the index when items are created, updated, deleted,
destroyed, or renamed via the storage api of moin, indexing layer or above.

Configuration

Your need to have a index_storage entry in your wiki config.

We use whoosh for indexing and as whoosh supports multiple storage backends,
this entry is made to potentially support any storage supported by whoosh.

In general, this entry has the form of:

index_storage = kind, (p1, p2, ...), {kw1=..., kw2=..., ...}

Currently, we only support the ‘FileStorage’ kind of index storage, which only
has one parameter - the index directory:

index_storage = 'FileStorage', ("/path/to/moin-2.0/wiki/index",), {}

Notes for FileStorage:

	The path MUST be absolute, writable and should be on a fast, local filesystem.

	Moin will use index.temp directory as well, if you build an index at
the temporary location.

moin index subcommand reference

You can use the moin index-* group of cli subcommands to manage indexes.

Many of the cli commands for index management support a –tmp option to use
the temporary index location. This is useful if you want to do index operations
in parallel to a running wiki which is still using the index at the normal
index location.

moin index-create

Creates an empty but valid index.

Note: the moin WSGI application needs an index and storage to successfully start up.
Please see command moin create-instance.

moin index-build

Process all revisions of the wiki and add the indexable documents to the index.

Note:

	For big wikis, this can take rather long; consider using –tmp.

	index-build does NOT clear the index at the beginning.

	index-build does not check the current contents of the index. Therefore you must not run
index-build multiple times for the same data or the same wiki.

moin index-update

Compare an index to the current storage contents and update the index as
needed (add, remove, update) to reflect the current storage contents.

Note: You can use this after building at the tmp location to get
the changes that happened to the wiki while building the index as well. You can run
index-update multiple times to keep even more caught up.

moin index-destroy

Destroy an index, such that nothing left at the respective location.

moin index-move

Move the index from the temporary location to the normal location.

moin index-optimize

Optimize an index:: see Whoosh docs for more details.

moin index-dump

Output index contents in human readable form, e.g. for debugging purposes.

Note: only fields with attribute stored=True can be displayed.

Building an index for a single wiki

If your wiki is fresh and empty

Use:

moin index-create

Storage and index are now initialized and both empty.

If you add data to your wiki, the index will get updated automatically.

If your wiki has data and is shut down

If index needs a rebuild for some reason, e.g. index lost, index damaged,
incompatible upgrade, etc., use:

moin index-destroy
moin index-create
moin index-build # can take a while...

If your wiki has data and should stay online

Use:

moin index-create --tmp
moin index-build --tmp # can take a while...
moin index-update --tmp # should be quicker, make sure we have 99.x%
better shut down the wiki now or at least make sure it is not changed
moin index-update --tmp # make sure we have indexed all content, should be even quicker.
moin index-move # instantaneously
start the wiki again or allow changes now again

Note: Indexing puts load onto your server, so if you like to do regular
index rebuilds, schedule them at some time when your server is not too busy.

Building an index for a wiki farm

If you run a wiki farm (multiple related wikis), you may share the index
between the wikis, so users will be able to search in one wiki
and also see results from the other wikis.

Before you start, you must prepare your wiki configs. For example, for a company
that uses two farm wikis, such as Sales and Engineering, Their respective
wiki configs could look like:

Sales:

interwikiname = "Sales"
index_storage = 'FileStorage', ("/path/to/moin-2.0/wiki/index",), {}

Engineering:

interwikiname = "Engineering"
index_storage = 'FileStorage', ("/path/to/moin-2.0/wiki/index",), {}

Now do the initial index building:

moin index-create # create an empty index
now add the indexes from both other wikis:
moin index-build # with Sales wiki configuration
moin index-build # with Engineering wiki configuration

Now you should have a shared index for all wikis.

Note: Do not build indexes for multiple wikis in parallel. This is not
supported.

 Password Resetting/Invalidation

Password Resetting/Invalidation

There might be circumstances when the wiki admin wants or needs to reset one
user’s or all users’ password (hash).

For example:

	you had a security breach on your wiki server (or somewhere else) and the
old password hashes (or passwords) were exposed

	you want to make sure some user or all users set a new password, e.g. if:

	your password policy has changed (requiring longer passwords for example)

	you changed your passlib configuration and want to immediately have all
hashes upgraded

Note: if we say “reset a password” (to use a commonly used term), we mean to
“invalidate the password hash” (so that no password exists that validates
against that hash). MoinMoin does not keep user passwords in cleartext.

The files we refer to below are located in docs/examples/password-reset/…

Resetting one or few password(s)

If you somehow interact with the users corresponding to the user accounts in
question (by phone or directly), you don’t need the extensive procedure as
described below, just use:

moin account-password --name JoeDoe

That will reset JoeDoe’s password. Tell him to visit the login URL and use
the “forgot my password” functionality to define a new password.

If that doesn’t work (e.g. if e-mail is not enabled for your wiki or he has
a non-working e-mail address in his profile), you can also set a password for
him:

moin account-password --name JoeDoe --password uIkV9.-a3

Choose a rather complicated password to make sure they change it a minute
afterwards (to another, hopefully safe password).

Resetting many or all password(s)

If you have a lot of passwords to reset, you need a better procedure that
avoids having to deal with too many users individually.

Preparing your users

Tell your users beforehands that you will be doing a password reset, otherwise
they might find the automatically generated E-Mail they’ll get suspicious and
you’ll have to explain it to them individually that the E-Mail is legitimate.

Also, remind your users that having a valid E-Mail address in their user
settings is essential for getting a password recovery E-Mail.

If an active user does somehow not get such a mail, you likely will have to
manually define a valid E-Mail address (or even password) for that user.

Make sure E-Mail functionality works

If you know you have working E-Mail functionality, skip this section.

Password recovery and password reset notification work via E-Mail, so you
should have it configured:

the E-Mail address used for From: (consider using an address that
can be directly replied to, at least while doing the pw reset):
mail_from = 'wiki@example.org'
your smtp mail server hostname:port (default is 25)
mail_smarthost = 'mail.example.org:587'
the login there, if authentication is needed
mail_username = 'wiki@example.org'
mail_password = 'SuperSecretSMTPPassword'

You can try whether it works by using the “forgot my password” functionality
on the login page.

Editing mailtemplate.txt

If you edit mailtemplate.txt, please be very careful and follow these rules
(otherwise you might just see the script command crashing):

The contents must be utf-8 (or ascii, which is a subset of utf-8).
In case of doubt, just use plain English.

Some places you likely should edit are marked with XXX.

Do not use any % character in your text (except for the placeholders).
If you need a verbatim % character, you need to write %%.

It is a very good idea to give some URL (e.g. of a web or wiki page) in
the text where users can read more information.

Of course the information at that URL should be readable without requiring
a wiki login (you just have invalidated his/her password!), so the user can
get informed before clicking links he got from someone via E-Mail.

We have added a wikitemplate.txt you can use to create such a wiki page.

Instead of creating a web or wiki page with the information, you could
also write all the stuff into the mail template directly, but please consider
that E-Mail delivery to some users might fail for misc. reasons, so having
some information on the web/wiki is usually better.

Editing wikitemplate.txt

Just copy & paste it to some public page in your wiki, e.g. “PasswordReset”.

Some places you likely should edit are marked with XXX.

Doing the password reset

Maybe first try it with a single user account:

moin account-password --name JoeDoe --notify --subject 'Wiki password reset' --text-from-file mailtemplate.txt

Use some valid name, maybe a testing account of yourself. You should now have
mail. If that worked ok, you can now do a global password reset for your wiki:

moin account-password --verbose --all-users --notify --subject 'Wiki password reset' --text-from-file mailtemplate.txt

The subject may contain a placeholder for the sitename, which is useful for
wiki farms (showing the builtin default here):

'[%(sitename)s] Your wiki account data'

 Maintenance

Maintenance

Reduce Revisions

This process removes all but the current revision of selected items,
it reduces the storage required for your wiki at the expense of loss
of history.

To perform on entire wiki, run the following command:

moin maint-reduce-revisions

To perform on an item with name “ItemName”, run the following command:

moin maint-reduce-revisions -q ItemName

Set Metadata

Manually modify metadata of items.

Validate and Optionally Fix Metadata

Modifications of wiki data outside of edits via the webapp
such as use of the load-help and item-put moin commands
can result in invalid metadata.

The processes below check for and optionally fix the following issues:

	size does not match size of the revision’s data in bytes

	sha1 hash does not match has of the revision’s data

	parent id should not be present for revision number 1 of a given item

	parent id for each revision should be the data id for the previous revision number for that item

	every revision should have a revision number

	an item should not have repeated revision numbers

To check for invalid metadata, run the following command:

moin maint-validate-metadata --all-backends

To view detailed list of invalid items:

moin maint-validate-metadata --all-backends --verbose

To fix issues, add --fix option to any of the above commands.

To operate on only a selection of backends, replace --all--backends option with --backends
followed by comma separated list of backends to process

 Moin Command Line Interface

Moin Command Line Interface

Moin2 has two command line interfaces. The first interface, powered
by quickinstall.py and started by the ./m command (m on windows),
implements the most common functions used by developers.
This CLI is only available when moin is installed using git to
clone a repository from https://github.com/moinwiki/moin or alternative.

The second interface, moin, is implemented by several Python scripts
located in the /cli/ directory. This interface targets wiki migration,
account creation and maintenance, and wiki maintenance.

There is some overlap between the two interfaces. Several of the commands
within the first interface are implemented by wrapping one or more of the
cli interface commands to accomplish a task.

./m Interface

The virtual environment must be activated before using the ./m
interface. Executing ./m (m on windows) without any options produces
the menu:

usage: "{0} <target>" where <target> is:

quickinstall update virtual environment with required packages
extras install packages required for docs and moin development
docs create moin html documentation (requires extras)
interwiki refresh intermap.txt
log <target> view detailed log generated by <target>, omit to see list

new-wiki create empty wiki
restore * create wiki and restore wiki/backup.moin *option, specify file
import19 <dir> <args> import a moin1.9 wiki/data instance from <dir> with <args>
 where <args> = "--markup_out moinwiki" or markdown,rst,html,...

run * run built-in wiki server *options (--port 8081)
backup * roll 3 prior backups and create new backup *option, specify file
dump-html * create a static HTML image of wiki *options, see docs
index delete and rebuild indexes

css run lessc to update basic theme CSS files
tests * run tests, log output (-v -k my_test)
coding-std correct scripts that taint the repository with trailing spaces..

del-all same as running the 4 del-* commands below
del-orig delete all files matching *.orig
del-pyc delete all files matching *.pyc
del-rej delete all files matching *.rej
del-wiki create a backup, then delete all wiki data

moin Interface

moin is the command line interface to miscellaneous MoinMoin Wiki related
tools.

If you invoke moin without any arguments, it will show a short quick help,

moin –help will show a more complete overview:

Usage: moin [OPTIONS] COMMAND [ARGS]...

 Moin extensions to the Flask CLI

Options:
 -e, --env-file FILE Load environment variables from this file. python-
 dotenv must be installed.
 -A, --app IMPORT The Flask application or factory function to load, in
 the form 'module:name'. Module can be a dotted import
 or file path. Name is not required if it is 'app',
 'application', 'create_app', or 'make_app', and can be
 'name(args)' to pass arguments.
 --debug / --no-debug Set debug mode.
 --version Show the Flask version.
 --help Show this message and exit.

Commands:
 account-create Create a user account
 account-disable Disable user accounts
 account-password Set user passwords
 create-instance Create wikiconfig and wiki instance...
 dump-help Dump a namespace of user help items to .data...
 dump-html Create a static HTML image of this wiki
 help Quick help
 import19 Import content and user data from a moin 1.9 wiki
 index-build Build the indexes
 index-create Create empty indexes
 index-destroy Destroy the indexes
 index-dump Dump the indexes in readable form to stdout
 index-move Move the indexes from the temporary to the...
 index-optimize Optimize the indexes
 index-update Update the indexes
 item-get Get an item revision from the wiki
 item-put Put an item revision into the wiki
 load Deserialize a file into the backend; with...
 load-help Load a directory of help .data and .meta file...
 maint-reduce-revisions Remove all revisions but the last one from all...
 maint-set-meta Set meta data of a new revision
 maint-validate-metadata Find and optionally fix issues with item metadata
 routes Show the routes for the app.
 run Run a development server.
 save Serialize the backend into a file
 shell Run a shell in the app context.
 welcome Load initial welcome page into an empty wiki

See also

moinmoin(1)

 MoinMoin Supports You

MoinMoin Supports You

Free Support

You can get free support and information here:

	on our chat channels, see https://moinmo.in/MoinMoinChat

	on our wiki, see https://moinmo.in/ - please note that quite a lot of content
there is about moin 1.x and does not apply to moin2. One page has a lot
of information about moin2 and also links to all sorts of moin2 resources:
https://moinmo.in/MoinMoin2.0

	on our mailing list, see https://moinmo.in/MoinMoinMailingLists

	on github: https://github.com/moinwiki/moin

Note

All free support is done voluntarily by helpful MoinMoin community members.
Thanks to everyone who is helping!

If you enjoyed / want to enjoy free community support, please also consider
being an active part of the community and also supporting it.

Commercial Support

As MoinMoin 2.0 is not released yet, there is no support for production
systems based on it.

If you want to talk about development topics, please contact the developers.

You Support MoinMoin

Like to help others?

Just stay connected to IRC, our wiki, the mailing list (see above) and help
others searching for support there.

Found a bug?

	File a bug report on the issue tracker.

	Even better: fix the bug, submit a pull request with a unit test and a fix.

Have an idea?

	Discuss it on IRC and file a feature request.

	Even better: discuss and write some Python code implementing it.

Born to code?

	Help to work on moin2 core, so it gets released sooner.

	Help to maintain moin 1.9 until moin2 is ready.

Loving UI / UX design?

	Help us make moin2 look and feel better!

Have good language or documentation skills?

	If you are a native speaker of a language other than English, with a good
understanding of English, consider helping with improving translation to
your language. (not yet for moin2, too early!) see also Translating MoinMoin

	Improve the documentation (see below).
Here is a list of all TODOs in this documentation:

Todo

add the usual coding(s) for some platforms (like windows)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/moin-20/checkouts/2.0.0a1/docs/admin/configure.rst, line 558.)

Todo

check if SMBMount still works as documented

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/moin-20/checkouts/2.0.0a1/docs/admin/configure.rst, line 703.)

Todo

describe more moin configuration

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/moin-20/checkouts/2.0.0a1/docs/admin/configure.rst, line 1504.)

 Translating MoinMoin

Translating MoinMoin

If your language already exists

To find out if someone has already started a translation of moin2 into your
language; check the folder moin/translations in the source tree.
If there is a folder with your language code (locale) [1], you can
start with the steps below. If not, please take a look at If your
language doesn’t exist yet.

	Make sure you have the latest version of the source tree (git).
You will also need to have python installed, with setuptools and babel
packages.

	Go to the top directory and execute:

pybabel update -l <locale> -i src/moin/translations/MoinMoin.pot \
 -d src/moin/translations/ -w 116

where locale is the short language descriptor of your desired
language. It should be the name of a folder in MoinMoin/translations.
For German it is “de”.

	Open the file src/moin/translations/<locale>/LC_MESSAGES/messages.po
and do your translation. A short explanation of this process follows:

	Find an entry with an empty or bad translated text, the text after
msgstr, and apply your changes.

	never edit the ‘msgid’ string, and only edit the ‘msgstr’ field

	Variables like %(name)x, where x is any character, must be kept as
they are. They must occur in the translated text.

	For better readability you can divide a text-string over more than
one line, by “surrounding” each line with double quotes (“).
It is a usual convention to have a maximal line-length of 80
characters.

	Comments starting with “#.”, “#:” or “#|” are
auto-generated and should not be modified.

	Comments starting with “# “ (# and at least one whitespace) are
translator-comments. You can modify/add them. They have to be
placed right before the auto-generated comments.

	Comments starting with “#,” and separated with “,” are flags.
They can be auto-generated, but they can also be set by the
translator.

An important flag is “fuzzy”. It shows that the msgstr string might
not be a correct translation. Only the translator can
judge if the translation requires further modification, or is
acceptable as it is. Once satisfied with the translation, he/she then
removes this fuzzy attribute.

	Save the messages.po file and execute:

pybabel compile -l <locale> -d src/moin/translations/

Guidelines for translators

In languages where a separate polite form of address exists, like the
German “Sie”/”Du”, always use the polite form.

If your language doesn’t exist yet

You want to translate moin2 to your language? Great! Get in contact with
the developers, but …

Note

please don’t ask us whether we want other translations, we
currently do not want them, it is still too early. We just want
1 translation and it needs to be German because that is what many
moin developers can maintain themselves.

	Initialize a new catalog:

pybabel init -l <locale> -i src/moin/translations/MoinMoin.pot \
 -d src/moin/translations/ -w 116

	Adjust the src/moin/translations/<locale>/LC_MESSAGES/messages.po.

Follow the instructions in First steps with a new *.po file and
then you can remove the fuzzy flag, which prevents the file from
being compiled.

	Follow the steps above, see If your language already exists.

First steps with a new *.po file

A newly created translation needs a few initial preparations:

	replace “PROJECT” with “MoinMoin 2”

	replace “FIRST AUTHOR <EMAIL@ADDRESS>” with the appropriate information
about yourself

	replace “PROJECT VERSION” in the head msgstr with
“MoinMoin 2.0” or newer if neccessary

	change the value of “Last-Translator” to your data

	change the value of “Language-Team” to
“Language <moin-user@lists.sourceforge.net>”

Note for developers

We use the format()-Method in internationalized Strings, e.g.
_('Hello {name}').format(name='World'). _() is an alias for gettext()

If the translatable string contains a variable plural, that means
the string contains an object whose exact number you don’t know,
you will have to use N_(), which is an alias for ngettext().
Note that this is not only needed for the decision
between one and more objects, because other languages have other
and more difficult plurals than English. The usage is
N_(singular, plural, num).format(**variables). **variables
are used to substitute the keys by format() as explained above.

Example:
N_('{number} file removed from {directory}', '{number} files removed from {directory}', num=n).format(number=n, directory=directory)

n has to appear twice because the first gives ngettext() information
about the exact number and the second is the variable for the format
string replacement.

If you made changes to any gettext() string, please update the .pot file
using:

pybabel extract -F babel.cfg -o src/moin/translations/MoinMoin.pot \
 -k "_ gettext L_ lazy_gettext N_ ngettext" \
 --msgid-bugs-address "English <moin-user@python.org>" \
 --copyright-holder "Moin Core Team, see http://moinmo.in/MoinCoreTeamGroup" \
 --project "moin" --version "<version>" -w 116 src/

Because this sometimes creates large diffs, just because of a
change in line numbers, you can of course use this command sparingly.
Another option for better readability is to do a separate commit
for this.

[1]
For more information on locale strings, see
https://www.gnu.org/software/gettext/manual/html_node/Locale-Names.html.

 Development

Development

Useful Resources

IRC channels on chat.freenode.net (quick communication and discussion):

	#moin-dev (core development topics)

	#moin (user support, extensions)

Wikis:

	https://moinmo.in/ (production wiki, using moin 1.9)

Documentation (installation, configuration, user docs, api reference):

	https://moin-20.readthedocs.io/en/latest/

Repository, Issue tracker (bugs, proposals, todo), Code Review, etc.:

	https://github.com/moinwiki/moin

Requirements for development

The virtualenv Python package is required.
The installation process for virtualenv varies with your OS and Python distribution.
Many linux distributions have a package manager that may do the installation.
Windows users (and perhaps others) may download setuptools from https://pypi.org/project/setuptools/.
Once setuptools is installed, do “easy_install virtualenv”.
Current ActiveState distributions include virtualenv in the installation bundle.
If all else fails, try your favorite search engine.

git is required should you wish to contribute patches to the moin2 development effort.
Even if you do not intend to contribute, git is highly recommended as it
will make it easy for you to obtain fixes and enhancements from the moin2 repositories.
git can be installed with most linux package managers or downloaded from https://git-scm.com/.
You can also find GUI clients there.

Typical development workflow

This is the typical workflow for anyone that wants to contribute to the development of Moin2.

create your development environment

	if you do not have a github account, create one at https://github.com/

	fork the main repository: https://github.com/moinwiki/moin to your gh user

	clone your gh repo to your local development machine:

cd <parent_directory_of_your_future_repo>
git clone https://github.com/yourname/moin.git

	cd to repo root:

cd moin

	create the virtualenv and download packages:

python quickinstall.py

	activate virtualenv:

. activate # Windows: activate

	create a wiki instance and load help data and welcome pages:

moin create-instance --full

	start the built-in server:

moin run

	point your browser at http://127.0.0.1:5000/ to access your development wiki

	key ctrl+C to stop the built-in server

add more tools, exercise tools

	install additional software that developers may require:

./m extras # Windows: m extras

	run the unit tests, note any existing test failures:

./m tests # Windows: m tests

	install NodeJS and NPM with Linux package manager; Windows users may download both from https://nodejs.org/download/

	On Ubuntu 14.04 or any distribution based on Ubuntu you need to install “npm” and “nodejs-legacy” (to get the “node” command).

	install lessc (“less” below is not a typo):

sudo npm install less -g # Windows: npm install less -g
lessc --version" # show version number to prove it works

	regenerate CSS files:

./m css # Windows: m css
git diff # verify nothing changed

	check for coding errors (tabs, trailing spaces, line endings, template indentation and spacing):

./m coding-std # Windows: m coding-std
git diff # verify nothing changed

	revert any changes from above:

git reset --hard

	create local docs:

./m docs # Windows: m docs

	set options on your favorite editor or IDE

	convert tabs to 4 spaces

	delete trailing blanks on file save

	use unix line endings (use Windows line endings on .bat and .cmd files)

	use mono-spaced font for editing

	if you are new to git, read about it (https://git-scm.com/book/),
consider printing a cheatsheet

	if you want a Python IDE, try https://www.jetbrains.com/pycharm/ Free Community Edition

	join #moin-dev IRC channel; ask questions, learn what other developers are doing

review configuration options

	review https://moin-20.readthedocs.io/en/latest/admin/configure.html

	configure options by editing wikiconfig.py

	set superuser privileges on at least one username

	the default configuration options are commonly used, it is likely new bugs can be
found by testing different options

find a task to work on

	look at the issue tracker to find a task you can solve

	in case you find a new bug or want to work on some (non-trivial) new issue or idea that is
not on the issue tracker, create an issue with a detailed description

	discuss your chosen task with other developers on the #moin-dev IRC
channel

	to avoid duplicate work, add a comment on the issue tracker that you are
working on that issue

	just before you start to code changes, bring your repo up to date:

git checkout master # make sure you are on master branch
git pull mm master # update your master branch
git checkout -b mychange # create a new branch "mychange"
... # implement your change
tox # run the tests, fix any new failure!
git status # check what new files you created
git diff # check what changes you did
git add ... # add the files you want to commit
git commit # commit, write a nice commit comment
git push # push to your gh user's moin repo
... # go to gh moinwiki/moin and make a PR

develop a testing strategy

	if you fix something that had no test, first try to write a correct,
but failing test for it, then fix the code and see a successful test

	if you implement new functionality, write tests for it first, then
implement it

	make a plan for using a browser to test your changes; which wiki pages are
effected, how many browsers must be tested

develop a working solution

	work in your local repo on your local development machine
(be sure you work in the right branch)

	concentrate on one issue / one topic, create a clean set of changes
(that means not doing more than needed to fix the issue, but also it
means fixing the issue completely and everywhere)

	write good, clean, easy-to-understand code

	obey PEP-8

	do not fix or change code unrelated to your task, if you find
unrelated bugs, create new issues on the tracker

	regularly run the unit tests (“./m tests”), the amount of failing tests
shall not increase due to your changes

review your working solution

	use git diff, git status - read everything you changed - slowly, look for
things that can be improved

	if you have TortoiseGIT, use those graphical tools to review changes

	look for poor variable names, spelling errors in comments, accidental addition
or deletion of blank lines, complex code without comments, missing/extra spaces

	fix everything you find before requesting feedback from others

	run tests again “./m tests”

	check for trailing spaces, line endings, template indentation “./m coding-std”

	if Javascript files were changed, run https://www.jslint.com/

publish your change

	do some final testing - practically and using the unit tests

	commit your changes to your local repo, use a concise commit comment
describing the change

	while a commit message may have multiple lines, many tools show only 80 characters of the first line

	stuff as much info as possible into those first 80 characters:

<concise description of your change>, fixes #123

	push the changeset to your public github repo

	create a pull request so your changes will get reviewed and pulled into the
main repository

	if you fixed an issue from the issue tracker, be sure the issue gets
closed after your fix has been pulled into main repo.

	celebrate, loop back to “find a task to work on”

update your virtualenv

Every week or so, do “m quickinstall” to install new releases of
dependent packages. If any new packages are installed, do a
quick check for breakages by running tests, starting the
build-in server, modify an item, etc.

MoinMoin architecture

moin2 is a WSGI application and uses:

	flask as framework

	flask cli and click for command line interface

	flask-babel / babel / pytz for i18n/l10n

	flask-theme for theme switching

	flask-caching as cache storage abstraction

	werkzeug for low level web/http page serving, debugging, builtin server, etc.

	jinja2 for templating, such as the theme and user interface

	flatland for form data processing

	EmeraldTree for xml and tree processing

	blinker for signalling

	pygments for syntax highlighting

	for stores: filesystem, sqlite3, sqlalchemy, memory

	jquery javascript lib, a simple jQuery i18n plugin Plugin [https://github.com/recurser/jquery-i18n]

	CKeditor, the GUI editor for (x)html

	svgdraw as drawing tool

How MoinMoin works

This is a very high level overview about how moin works. If you would like
to acquire a more in-depth understanding, please read the other docs and code.

WSGI application creation

First, the moin Flask application is created; see moin.app.create_app:

	load the configuration (app.cfg)

	register some modules that handle different parts of the functionality

	moin.apps.frontend - most of what a normal user uses

	moin.apps.admin - for admins

	moin.apps.feed - feeds, e.g. atom

	moin.apps.serve - serving some configurable static third party code

	register before/after request handlers

	initialize the cache (app.cache)

	initialize index and storage (app.storage)

	initialize the translation system

	initialize theme support

This app is then given to a WSGI compatible server somehow and will be called
by the server for each request for it.

Request processing

Let’s look at how it shows a wiki item:

	the Flask app receives a GET request for /WikiItem

	Flask’s routing rules determine that this request should be served by
moin.apps.frontend.show_item.

	Flask calls the before request handler of this module, which:

	sets up the user as flaskg.user - an anonymous user or logged in user

	initializes dicts/groups as flaskg.dicts, flaskg.groups

	initializes jinja2 environment - templating

	Flask then calls the handler function moin.apps.frontend.show_item,
which:

	creates an in-memory Item

	by fetching the item of name “WikiItem” from storage

	it looks at the contenttype of this item, which is stored in the metadata

	it creates an appropriately typed Item instance, depending on the contenttype

	calls Item._render_data() to determine what the rendered item looks like
as HTML

	renders the show_item.html template and returns the rendered item html

	returns the result to Flask

	Flask calls the after request handler which does some cleanup

	Flask returns an appropriate response to the server

Storage

Moin supports different stores, like storing directly into files /
directories, using key/value stores, using an SQL database etc, see
moin.storage.stores. A store is extremely simple: store a value
for a key and retrieve the value using the key + iteration over keys.

A backend is one layer above. It deals with objects that have metadata and
data, see moin.storage.backends.

Above that, there is miscellaneous functionality in moin.storage.middleware for:

	routing by namespace to some specific backend

	indexing metadata and data + comfortable and fast index-based access,
selection and search

	protecting items by ACLs (Access Control Lists)

DOM based transformations

How does moin know what the HTML rendering of an item looks like?

Each Item has some contenttype that is stored in the metadata, also called
the input contenttype.
We also know what we want as output, also called the output contenttype.

Moin uses converters to transform the input data into the output data in
multiple steps. It also has a registry that knows all converters and their supported
input and output mimetypes / contenttypes.

For example, if the contenttype is text/x-moin-wiki;charset=utf-8, it will
find that the input converter handling this is the one defined in
converters.moinwiki_in. It then feeds the data of this item into this
converter. The converter parses this input and creates an in-memory dom tree
representation from it.

This dom tree is then transformed through multiple dom-to-dom converters for example:

	link processing

	include processing

	smileys

	macros

Finally, the dom-tree will reach the output converter, which will transform it
into the desired output format, such as text/html.

This is just one example of a supported transformation. There are quite a few
converters in moin.converters supporting different input formats,
dom-dom transformations and output formats.

Templates and Themes

Moin uses jinja2 as its templating engine and Flask-Themes as a flask extension to
support multiple themes. There is a moin/templates directory that contains
a base set of templates designed for the Modernized theme. Other themes may
override or add to the base templates with a directory named themes/<theme_name>/templates.

When rendering a template, the template is expanded within an environment of
values it can use. In addition to this general environment, parameters can
also be given directly to the render call.

Each theme has a static/css directory. Stylesheets for the Basic theme in
MoinMoin are compiled using the source theme.less file in the Basic theme’s
static/custom-less directory.

./m css # Windows: m css

Internationalization in MoinMoin’s JS

Any string which has to be translated and used in the JavaScript code, has to be defined
at moin/templates/dictionary.js. This dictionary is loaded when the page loads and
the translation for any string can be received by passing it as a parameter to the _ function,
also defined in the same file.

For example, if we add the following to i18n_dict in dictionary.js

"Delete this" : "{{ _("Delete this") }}",

The translated version of “somestring” can be accessed in the JavaScript code by

var a = _("Delete this");

Testing

We use pytest for automated testing. It is currently automatically installed
into your virtualenv as a dependency.

Running the tests

To run all the tests, the easiest way is to do:

./m tests # windows: m tests

To run selected tests, activate your virtual env and invoke pytest from the
toplevel directory:

pytest --pep8 # run all tests, including pep8 checks
pytest -rs # run all tests and output information about skipped tests
pytest -k somekeyword # run the tests matching somekeyword only
pytest --pep8 -k pep8 # runs pep8 checks only
pytest sometests.py # run the tests contained in sometests.py

Tests output

Most output is quite self-explanatory. The characters mean:

. test ran OK
s test was skipped
E error happened while running the test
F test failed
x test was expected to fail (xfail)

If something goes wrong, you will also see tracebacks in stdout/stderr.

Writing tests

Writing tests with pytest is easy and has little overhead. Just
use the assert statements.

For more information, please read: https://docs.pytest.org/

IDE Setup

Most MoinMoin developers use PyCharm, either the Professional
Edition or the Free Community Edition. Choose one or the other
and follow the PyCharm setup instructions.

The screenshots below are from Windows 10, using Python 3.10 and
PyCharm Community Edition to debug Moin2 code. *nix setup is similar.

Debug a Transaction

When setting up the Run/Debug Configurations, it is important to get
the right values for the Script path, Parameters, Python interpreter,
and Working directory. For general debugging of the moin2 code base
those parameters should be similar to:

[image: pycharm example]
If the parameters are correct, then the Run dropdown menu will show green
icons for run and debug. If the only choice under the Run menu is Edit Configuration,
then one of the parameters is wrong, try again. Note: Py``Charm has a tendency
to change the Working Directory field when other values are edited. Be sure it
points to the repo root.

Once the configuration is correct, load a source program, set a break point
and run the debugger. Point your browser to http://127.0.0.1:5000.

Debug a Moin Script

To debug one of the moin commands that are normally executed in a terminal window,
follow the example below. You can view the list of moin commands by activating
the virtual environment and doing a “moin –help”.

[image: pycharm example]

Debug a Test

To debug a test, start by going to the Py``Charm edit configuration view.
Click the + in the upper left corner to show the popup list of configuration
types. Choose Tox, and then follow the example below for other field values.
Note the test starup will be rather slow, be patient.

[image: pycharm example]

Documentation

Moin provides two types of documention. The Sphinx docs (https://www.sphinx-doc.org)
are written in reST markup, and have a target audience of developers and wiki admins.
The Help docs have a target audience of wiki editors and are written in markups supported by moin.

The Help docs are a minor subset of the Sphinx docs
and may be available in several languages. The Sphinx docs are available only in English.

Sphinx docs are available at https://moin-20.readthedocs.io/en/latest/ or
may be created locally on Moin wiki’s installed by developers.
Documentation reST source code, example files and some other text files
are located in the moin/docs/ directory in the source tree.

Creating local Sphinx docs

Sphinx can create all kinds of documentation formats. The most common are
the local HTML docs that are linked to under the User tab. To generate local docs:

./m docs # Windows: m docs

Loading the Help docs

Wiki admins must load the help docs to make them available to editors. Help docs are
located in the moin/src/moin/help/ directory in the source tree. Most themes
will provide a link to the markup help above the edit textarea or the entire help namespace
may be accessed through the User tab. Write permission to help files is granted by default.
Wiki admins can change permissions via the ACL rules.

To load the help docs:

moin load-help --namespace help-common # images common to all languages
moin load-help --namespace help-en # English text

Multiple languages may be loaded. Current languages include:

en

Updating the Help docs

Developers may update the help files or add new files through the normal edit process.
When editing is complete run one or more of:

moin maint-reduce-revisions # updates all items in all namespaces
moin maint-reduce-revisions -q <item-name> -n help-en --test true # lists selected items, no updates
moin maint-reduce-revisions -q <item-name> -n help-en # updates selected items

Dump all the English help files to the version controlled directory:

moin dump-help -n help-en

The above command may may be useful after updating one or more files. All of the files
will be rewritten but only the changed files will be highlighted in version control.

Moin Shell

While the make.py utility provides a menu of the most frequently used commands,
there may be an occasional need to access the moin shell directly:

source <path-to-venv>/bin/activate # or ". activate" windows: "activate"
moin -h # show help

Package Release on test.pypi.org

This procedure for updating test.pypi avoids adding release tags to master branch,
hoping that someday there will be a real 2.0.0a1. Current state
of moin 2 is pre-alpha.

Commit or stash all versioned changes. Pull all updates from master repo. Create a release branch.
Run ./m quickinstall to update the venv and translations. Run tests.
Add a tag with the next release number to the release branch:

git tag 2.0.0a14

Install or upgrade release tools:

pip install --upgrade setuptools wheel
pip install --upgrade twine
pip install --upgrade build

Build the distribution and upload to test.pypi.org:

py -m build > build.log 2>&1 # check build.log for errors
py -m twine upload --repository testpypi dist/*

Enter ID and password as requested.

Test Build

Create a new venv, install moin, create instance, start server, create item, modify and save an item:

<python> -m venv </path/to/new/virtual/environment>
cd </path/to/new/virtual/environment>
source bin/activate # scripts\activate
pip install --upgrade pip # next command fails with pip 9.0.1 and maybe later versions
pip install --pre --index-url https://test.pypi.org/simple --extra-index-url https://pypi.org/simple moin
moin --help # prove it works
moin create-instance --path <path/to/new/wikiconfig/dir> # path optional, defaults to CWD
cd <path/to/new/wikiconfig/dir> # skip if using default CWD
moin index-create
moin run # empty wiki
moin welcome # load welcome pages (e.g. Home)
moin load-help -n help-en # load English help
moin load-help -n help-common # load help images
moin run # wiki with English help and welcome pages

Announce update on #moin, moin-devel@python.org.

 Index

Index

 A
 | C
 | D
 | E
 | F
 | I
 | J
 | M
 | R
 | S
 | W

A

 	
 	acl

C

 	
 	contenttype

D

 	
 	data

E

 	
 	emeraldtree

F

 	
 	flask

I

 	
 	item

J

 	
 	jinja

M

 	
 	metadata

R

 	
 	revision

S

 	
 	session

 	
 	sqlalchemy

 	sqlite

W

 	
 	werkzeug

 	wiki engine

 	wiki farm

 	wiki instance

 	
 	wiki item

 	wiki page

 	wiki site

 	WSGI

 Glossary

Glossary

	acl
	Access Control List - you can use it to specify who may do what in
your wiki.

	contenttype
	A formal, standardized way of specifying of which type some data is.
E.g. ‘text/plain;charset=utf-8’ is the contenttype for some simple piece
of text (encoded using utf-8 encoding), ‘image/png’ is the contenttype
for a PNG image.

	data
	Just the raw data, no more, no less; can be some text, an image, a pdf.

	emeraldtree
	An XML / tree processing library used by moin.

	flask
	A micro framework used by moin.

	item
	A generic, revisioned object stored in your wiki storage.

	jinja
	A templating engine used by moin.

	metadata
	Additional information related to or about some data. For example, if
you create a new PDF item revision, the revision data will be the PDF
file’s content, but moin will also additionally store revision metadata
that tells that this revision is in fact a PDF (its contenttype - we do not
rely on or require .pdf extension on the item name), when it was saved,
maybe some comment you gave when saving, etc.

	revision
	Part of an item’s history, has metadata and data created for this item
at some specific time in its history. If you create an item, you create
its first revision. If you edit it and save, you create its next
revision.

	session
	As the protocol (http) used by a web browser is stateless, a means
to keep state is needed. This is usually done by using a cookie stored
within the user’s browser. It is used for example to stay logged-in into your
user account or store the trail of items you visited and for easier
navigation.

	sqlalchemy
	An SQL database abstraction library used by moin.

	sqlite
	An easy-to-use SQL database used by moin.

	werkzeug
	A WSGI library used by moin.

	wiki engine
	Software used to run a wiki site.

	wiki farm
	Running multiple wikis together on one server. Often, there is some
shared, common configuration inherited by all wikis, so each
individual wiki’s configuration becomes rather small.

	wiki instance
	All configuration and data related to a single wiki.

	wiki item
	A single content item within a wiki site.

	wiki page
	A single content item within a wiki site, possibly used for text-like items.

	wiki site
	A web site implemented using a wiki engine.

	WSGI
	Web Server Gateway Interface. It is a specification about how web servers,
like e.g. Apache with mod_wsgi, communicate with web applications, like
MoinMoin. It is a Python standard, described in detail in PEP 333.

_static/minus.png

_static/moinmoin.png

_static/file.png

_static/plus.png

_images/pycharmC.png
B Run/Debug Configurations

+ - B
~ @ Python Nome: | Tox Tests Allow multple nstances | | Store a project file

@ moin command Configuration Logs

v Btox
% Tox Tests

tox

Arguments:

Environments to run:

~ Environment

Environment variables:

Bython interpreter: | @ Python 3.10 (moin-venv-python) G GIT\main-veny pythonScpts python.cxe -

Interpreter options:

Working directory: | CAGIMmoin

Add content roots to PYTHONPATH

Add source roots to PYTHONPATH

~ Before launch
+

There are no tasks to run before launch

Show this page [Actvate toolwindow
it confgurtion templte,

_static/Logo_MoinMoin.png

nav.xhtml

 Table of Contents

 		
 Introducing MoinMoin

 		
 General

 		
 About MoinMoin

 		
 What makes MoinMoin special?

 		
 Who is using MoinMoin?

 		
 Web Sites

 		
 Intranet installations

 		
 Features

 		
 Operating System Support

 		
 Servers

 		
 Authentication

 		
 Authorization

 		
 Anti-Spam

 		
 Storage

 		
 Item Types

 		
 Storage Backend Types

 		
 Serialization

 		
 Search / Indexing

 		
 User Interface

 		
 OO user interface

 		
 Templating

 		
 Wiki features

 		
 Markup support

 		
 Feeds

 		
 Notification

 		
 Translation / Localization

 		
 Logging

 		
 Technologies

 		
 License

 		
 User Accounts

 		
 Account Creation

 		
 User Settings

 		
 Personal Settings

 		
 Change Password

 		
 Notification Settings

 		
 Wiki Appearance Settings

 		
 Quick Links

 		
 Options

 		
 Special Features for Users with Accounts

 		
 Your User Page

 		
 “My Changes”

 		
 Bookmarking

 		
 Quicklinks

 		
 Item Trail

 		
 Subscribing to Items

 		
 Logging out

 		
 Markups Supported by MoinMoin

 		
 Moin Wiki markup overview

 		
 Table Of Contents

 		
 Headings

 		
 Level 1

 		
 Level 2

 		
 Text formatting

 		
 Hyperlinks

 		
 Images and Transclusions

 		
 Blockquotes and Indentations

 		
 Lists

 		
 Definition Lists

 		
 Horizontal Rules

 		
 Tables

 		
 Parsers

 		
 Variables

 		
 Macros

 		
 Smileys and Icons

 		
 WikiCreole markup overview

 		
 Headings

 		
 Level 1

 		
 Level 2

 		
 Text formatting

 		
 Hyperlinks

 		
 Images and Transclusions

 		
 Paragraphs

 		
 Horizontal rules

 		
 Preformatted text

 		
 Lists

 		
 Tables

 		
 Macros

 		
 reST (ReStructured Text) Markup

 		
 Headings

 		
 Table of Contents

 		
 Text formatting

 		
 Hyperlinks

 		
 Images

 		
 Figures

 		
 Blockquotes and Indentations

 		
 Lists

 		
 Definition Lists

 		
 Field Lists

 		
 Option lists

 		
 Transitions

 		
 Backslash Escapes

 		
 Tables

 		
 Admonitions

 		
 Comments

 		
 Literal Blocks

 		
 Line Blocks

 		
 Docbook XML Markup

 		
 Lists

 		
 Simple text formatting

 		
 Quotes

 		
 Trademarks and Copyrights

 		
 Preformatted Data

 		
 Links

 		
 Tables

 		
 Images

 		
 Footnotes

 		
 Mediawiki markup overview

 		
 Headings

 		
 Level 1

 		
 Level 2

 		
 Text formatting

 		
 Hyperlinks

 		
 Images

 		
 Paragraphs

 		
 Horizontal rules

 		
 Preformatted text

 		
 Comments

 		
 Symbol entities

 		
 Lists

 		
 Indentations

 		
 Footnotes

 		
 Tables

 		
 Markdown Markup

 		
 Table of Contents

 		
 Headings

 		
 Preformatted Code

 		
 Simple text editing

 		
 Linking

 		
 Lists

 		
 Horizontal Rules

 		
 Backslash Escapes

 		
 Nested Blockquotes

 		
 Images

 		
 Inline HTML

 		
 Extensions

 		
 Templates and Meta Data

 		
 Templates

 		
 Meta Data

 		
 Searching and Finding

 		
 Entering search queries

 		
 Simple search queries

 		
 Examples

 		
 Redirect to best match

 		
 Examples

 		
 Using wildcards

 		
 Examples

 		
 Using regular expressions

 		
 Examples

 		
 Searching in specific fields

 		
 Examples

 		
 Notes

 		
 More information

 		
 File Upload

 		
 Single File Upload

 		
 Multiple File Upload

 		
 Namespaces

 		
 URL layout

 		
 User Subscriptions

 		
 Types of subscriptions

 		
 Editing subscriptions

 		
 Requirements

 		
 Servers

 		
 Dependencies

 		
 Clients

 		
 Installation

 		
 Installing the code

 		
 Creating a wiki instance

 		
 Run your wiki instance

 		
 Installation (for developers)

 		
 Clone the git repository

 		
 Installing

 		
 Next Steps

 		
 Troubleshooting

 		
 Bad Network Connection

 		
 Other Issues

 		
 Server Options

 		
 Built-in Web Server (easy)

 		
 Running the built-in server

 		
 Stopping the built-in server

 		
 Debugging with the built-in server

 		
 Using the built-in server for production

 		
 External Web Server (advanced)

 		
 Create and Serve a Static Wiki Image

 		
 Introduction into MoinMoin Configuration

 		
 Kinds of configuration files

 		
 Do small steps and have backups

 		
 Editing Python files

 		
 Why use Python for configuration?

 		
 Directory Structure

 		
 wikiconfig.py Layout

 		
 Wiki Engine Configuration

 		
 User Interface Customization

 		
 Using a custom snippets.html template

 		
 Displaying user avatars

 		
 XStatic Packages

 		
 Adding XStatic Packages

 		
 Custom Themes

 		
 Authentication

 		
 MoinAuth

 		
 HTTPAuthMoin

 		
 GivenAuth

 		
 LDAPAuth

 		
 AuthLog

 		
 SMBMount

 		
 Transmission security

 		
 Credentials

 		
 Contents

 		
 Encryption

 		
 Password security

 		
 Password strength

 		
 Password storage

 		
 Authorization

 		
 ACL for functions

 		
 ACLs for contents

 		
 ACLs - special groups

 		
 ACLs - basic syntax

 		
 ACLs - entry prefixes

 		
 ACLs - Default entry

 		
 Secrets

 		
 Groups

 		
 Group backend configuration

 		
 Dict backend configuration

 		
 Storage

 		
 create_simple_mapping

 		
 protecting middleware

 		
 routing middleware

 		
 indexing middleware

 		
 stores backend

 		
 fs store

 		
 sqla store

 		
 sqlite store

 		
 memory store

 		
 fileserver backend

 		
 namespaces

 		
 Mail configuration

 		
 Sending E-Mail

 		
 Admin Traceback E-Mails

 		
 User E-Mail Address Verification

 		
 Framework Configuration

 		
 Logging Configuration

 		
 Changes in MoinMoin

 		
 MoinMoin Version History

 		
 Version 2.0.0alpha

 		
 Upgrading

 		
 From moin < 1.9

 		
 From moin 1.9.x

 		
 Backup

 		
 Install moin2

 		
 Adjusting the moin2 configuration

 		
 Clean up your moin 1.9 data

 		
 Importing your moin 1.9 data

 		
 Testing

 		
 Keep your backups

 		
 Converting after reverting

 		
 Backup and Restore

 		
 Full Backup / Restore

 		
 Selective Backup

 		
 Selective Restore

 		
 Indexes

 		
 General

 		
 Configuration

 		
 moin index subcommand reference

 		
 moin index-create

 		
 moin index-build

 		
 moin index-update

 		
 moin index-destroy

 		
 moin index-move

 		
 moin index-optimize

 		
 moin index-dump

 		
 Building an index for a single wiki

 		
 If your wiki is fresh and empty

 		
 If your wiki has data and is shut down

 		
 If your wiki has data and should stay online

 		
 Building an index for a wiki farm

 		
 Password Resetting/Invalidation

 		
 Resetting one or few password(s)

 		
 Resetting many or all password(s)

 		
 Preparing your users

 		
 Make sure E-Mail functionality works

 		
 Editing mailtemplate.txt

 		
 Editing wikitemplate.txt

 		
 Doing the password reset

 		
 Maintenance

 		
 Reduce Revisions

 		
 Set Metadata

 		
 Validate and Optionally Fix Metadata

 		
 Moin Command Line Interface

 		
 ./m Interface

 		
 moin Interface

 		
 See also

 		
 MoinMoin Supports You

 		
 Free Support

 		
 Commercial Support

 		
 You Support MoinMoin

 		
 Like to help others?

 		
 Found a bug?

 		
 Have an idea?

 		
 Born to code?

 		
 Loving UI / UX design?

 		
 Have good language or documentation skills?

 		
 Translating MoinMoin

 		
 If your language already exists

 		
 Guidelines for translators

 		
 If your language doesn’t exist yet

 		
 First steps with a new *.po file

 		
 Note for developers

 		
 Development

 		
 Useful Resources

 		
 Requirements for development

 		
 Typical development workflow

 		
 create your development environment

 		
 add more tools, exercise tools

 		
 review configuration options

 		
 find a task to work on

 		
 develop a testing strategy

 		
 develop a working solution

 		
 review your working solution

 		
 publish your change

 		
 update your virtualenv

 		
 MoinMoin architecture

 		
 How MoinMoin works

 		
 WSGI application creation

 		
 Request processing

 		
 Storage

 		
 DOM based transformations

 		
 Templates and Themes

 		
 Internationalization in MoinMoin’s JS

 		
 Testing

 		
 Running the tests

 		
 Tests output

 		
 Writing tests

 		
 IDE Setup

 		
 Documentation

 		
 Creating local Sphinx docs

 		
 Loading the Help docs

 		
 Updating the Help docs

 		
 Moin Shell

 		
 Package Release on test.pypi.org

 		
 Test Build

_images/pycharmA.png
B Run/Debug Configurations
+-Em®
@ Python

@ moin command
> % tox

Edit configuration templates...

2

Name: | moin debug Store as project file

Run Modify options v Alt+M
@ Python 3.10 (moin-venv-python) C:\GIT\moin-venv-python Scripts pyihon.exe -
modue | flask

app moin.cli run

Press Alt for field hints
Working directory: | C/GIT/moin

Environment variables: | PYTHONUNBUFFERED=1

Separate variables with semicolon: VAR=value; VAR =valuel

Paths to ".env’

‘Open run/debug tool window when started Add content roots to PYTHONPATH

Add source roots to PYTHONPATH

ey v [concel Apply

_images/pycharmB.png
